The Object Module Manager

Includes AmperWorks

tmﬁnmmmmnmmmri\ il

/A Morgan Davis Group

Copyright

The Power Loom

From the 1851
Edition of The
| conographic
Encyclopedia of
Science, Literature
and Art

N
%

Printed on 20% post-
consumer recycled paper.

© 1992 MorcaN Davis Group. ALL RIGHTS RESERVED.
htt p: //ww. mor gandavi s. net

NO PART OF THIS PUBLICATION MAY BE REPRODUCED, STORED IN A
RETRIEVAL SYSTEM, OR TRANSMITTED, IN ANY FORM OR BY ANY
MEANS, ELECTRONIC, MECHANICAL, PHOTOCOPYING, RECORDING OR
OTHERWISE, WITHOUT THE PRIOR WRITTEN PERMISSION OF THE
AUTHOR. NO PATENT LIABILITY IS ASSUMED WITH RESPECT TO THE
USE OF THE INFORMATION CONTAINED HEREIN. WHILE EVERY
PRECAUTION HAS BEEN TAKEN IN THE PREPARATION OF THIS
PRODUCT, THE AUTHOR ASSUMES NO RESPONSIBILITY FOR ERRORS OR
OMISSIONS.

THE PRODUCT NAMES MENTIONED IN THIS MANUAL ARE THE
TRADEMARKS OR REGISTERED TRADEMARKS OF THEIR MANUFACTUR-
ERS.

ProDOS AnD ProDOS BA SIC ARE COPYRIGHTED PROGRAMS OF
ApprLE COMPUTER, INC. LICENSED TO THE MORGAN DAvis Groupr
TO DISTRIBUTE FOR USE ONLY IN COMBINATION WITH THIS PRODUCT.
APPLE SOFTWARE SHALL NOT BE COPIED ONTO ANOTHER DISKETTE
(EXCEPT FOR ARCHIVE PURPOSES) OR INTO MEMORY UNLESS AS PART
OF EXECUTION OF THIS PRODUCT. WHEN THIS PRODUCT HAS
COMPLETED EXECUTION, APPLE SOFTWARE SHALL NOT BE USED BY
ANY OTHER PROGRAM.

AprpLE COMPUTER, INC. MAKES NO WARRANTIES, EITHER EXPRESS OR
IMPLIED REGARDING THE ENCLOSED SOFTWARE PACKAGE, ITS
MERCHANTABILITY OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
THE EXCLUSION OF IMPLIED WARRANTIES IS NOT PERMITTED IN SOME
STATES. THE ABOVE EXCLUSION MAY NOT APPLY TO YOU. THIS
WARRANTY PROVIDES YOU WITH SPECIFIC LEGAL RIGHTS. THERE
MAY BE OTHER RIGHTS THAT YOU MAY HAVE THAT VARY FROM
STATE TO STATE.

FIRsT PRINTING — FEBRUARY 1992 — U.SA.

Contents

INrOAUCTION ...uee e 5
L@ 1= o [£ USSR 6
Chapter One: Using the OMM ..., 7
What You Should KNOWccccciiiiiiiiiiiiiieee 7
MEMOIY USAQE ...t 7
Loading the OMM ... 8
Y Te Yo (U] (SN = o) £ 1= PP 8
OMM COoOmMMANTS ...t 10
LOAD GET ..ttt 11
LOAD PRINT .ottt 12
LOAD FRE ..ttt 12
LOAD PEEK ...ttt 13
LOAD TRACE/NOTRACEotviiiiieeee et 13
LOAD CALL et 14
Sample Programs ..o 14
Chapter Two: Building A Module ..., 15
OMM FEATUIES ...t 15
Module Format.........ccccooeiiiiiiiecce e 15
[(== T 1= USRI 16
COdE SECTHION ..cooiiiiiiie e 17
Immediate Mode Table ... 18
Data SECHON ... e 18
IIMIC et e e e e e 19
MESSAGES ..evuieiiiiii et 20
ULility FUNCTIONSuviiiiiiiiiiiiiiiiiiiiiii e 23
Interfaces & SOUICES ..., 28
BUFfEr SPAcCe ... 28
Absolute REfEreNCEeSccooviiiiiiiiiiiiie s 29
OPCOde USAQE ...oooooieeeeeeeeeeeeeeeeee 29
Chapter Three: AMPEerWorkS.......ccccoeveeeeiiiiiieeieiiiiiiiinn 31
INTrOAUCTION ... e 31
Command SUMMATYcoooviiiiiiiiiiceeee e 32
Y (1=] 0] {0) 33
N (SetINfO) oo, 34
< (Parent DIr€CIOIY) ..ooooeieiieieieee 35

ASC e e e e 36
COPY it 36
ERASE ..o 36
FILES oottt 37
] RSP PPRERR 38
HLIN e e e e e e e e 38
LCASE ..ot 39
1 3 TSP PPPRRRR 39
LB R e 40
IMIDS . 40
VLT e 41
ONERR ..ot 42
POKE ...ttt a e 42
PO e aaaaa 43
PO e e e e e e 43
P RINT e e e e e e e e e e s r e e e e e e an 44
READ ...t 44
RE P T ettt e e aaa e s 45
RESTORE ...ttt e s 46
RESTORE GOTO ...ttt 46
RIGHTS oo a7
P s 48
R R I (10] 1 TR 48
STORE ...ttt 49
STORE CLEAR ..ottt a e 50
SWAP e 50
TEILES <.ttt e e e e e e e e e e 50
TIMIE <t 51
UCASEttt e e e e e e e e e e e 51
UNITIL ot e e e e e e e e e e e e enns 52
VAL e 52
VLIN e e e e 52
Appendix A: ASCIl Chart.......cccccceiii e, 53
Appendix B: ProDOS File TYPEScccuvvvvvvviiiiiiiiiieeeeeeeeee 55
Appendix C: Error COAES.........coooviviiiiiiiiiiiiiiiee e 57
AppendiX D: LICENSINGcoooviiiieiiiiiiieeeeeiisis e 59
Appendix E: BASIC SYNtaXcoovvviiiiiiiiiiiiieiieeeeee e 61

Introduction

What isthe Object M odule Manager (OMM)?

For the avid BASIC programmer, the OMM allows you to make
use of multiple machine language programs (e.g. utilities,

editors, debuggers, graphicstools, modem and printer drivers,
etc.) without the usual hasse of where to load them into
memory. Without the impending disaster normally accompanied
with putting two or more incompatible utilities into memory at
once.

Throughout this manual the following symbols are used to
denote keys on your keyboard:

Reset
opion] Option or solid-apple
command) COmmand or open-apple
control Control
Escape
return Return
delete Delete
Up arrow or _conal -K
Down arrow or _ control J
Left arrow or [_contol -H

@D
(2]
o

5 CS
o Mo 2
= i

Right arrow or [contol -U
b Tab or (conrol -]
Shift

Hyphenated key references, such as(command -_esc , tell you to press
and hold the first key while typing the second.

Credits

The OMM would not be in your hands now if it were not for the
encouragement and support | have received over the years. My
foremost gratitude goes to the many customers and friends who
have made it possible for meto create Apple Il software. |
cannot express enough appreciation for Tim Swihart, humble
servant of Apple Computer, who is alwaysthereto assist.
Finaly, | am forever grateful for the love and tireless patience
from my wife, Dawn, and children, Kristi and Ryan. To you all,
| express my most sincere thanks.

—Morgan Davis

CHAPTER ONE

Using the OMM

This chapter shows you how to get started with the Object
Module Manager (OMM). You'll learn how to load it into
memory and work with it using Applesoft BASIC.

What You
Should
Know

The OMM isauitility for Applesoft BASIC. It efficiently
manages machine language programs that enhance the BASIC
environment. A BASIC program can load machine language
programs (object modules) from disk into memory, and unload
them when no longer needed. It allows modules to send
messages to each other using intermodule communication
(IMC). With the OMM, programmers can easily create highly
integrated applications for use in the BASIC environment.

Since the OMM isaBASIC programmer’s utility, aworking
knowledge of Applesoft and ProDOS BASIC (BASIC.System)
Isessential.

If you plan to create your own modules for use with the OMM,
you'll need to know assembly language for the 6502-series
microprocessors. You'll also need an assembler.

Memory
Usage

The OMM residesin the main 48K memory bank. It does not
use any auxiliary memory or space used by aRAM disk. To
make the most efficient use of memory, the OMM moves itself
as high as possible into free memory, giving optimum space to
BASIC programs and modules.

As modules are loaded, the OMM places them just below itself
and any previoudly loaded modules, building downward into
memory. The OMM protects modules from being overwritten
by file commands, such as BLOAD.

1: USING THE OMM

If amodule isremoved, any modulesresiding below it are
moved up to recover unoccupied memory.

Loading the
OMM

Since the OMM isused by many software packages, getting it
Into memory may depend on the program you are using. Simply
booting the program’ s diskette may do the job.

If you plan to use the OMM with your own projects, hereis how
to get it into memory. From the Applesoft prompt (immediate
mode) type:

] - OW Loader retum |

From arunning program (deferred mode) use:

10 PRINT CHR$(4) "-QW Loader"

In each case, you may need to supply the full pathnameto the
OMM .Loader fileif it isin adirectory other than the current

directory.

NOTE: If a copy of the OMM.Loader isalready in memory, a
DUPLICATE FILE ERROR occurs.

Module
Entries

Once the OMM .Loader is activated, aline of information about
the OMM isdisplayed:

0 1=$0000 L=%$0800 A=$9200 14-Nov-91 OW 1.3

Titleand version

Date
Addressin memory
Length in bytes
ID number
Index number

1: USING THE OMM

Index Number. Each module, including the OMM itsdlf, can be
referenced by itsindex. Indexes start a 0 (the OMM) and
increase by one for each subsequently loaded module.

ID Number (I). Each module (and the OMM) isidentified by a
unique ID number. Modules can be referenced by index or by
ID when working with the OMM.

Length (L). Indicatesthe size of the module and the amount of
memory a module uses.

Address(A). Indicatesthe addressin memory wherethe
module resides.

Date. Verson date of the module. The programmer who
created it will update the date each time the module is changed.

Titleand Version. The name of the module and itsversion
number.

About Version Numbers

Version numbers are useful for indicating the various stages of enhancements
and corrections to computer programs. Hereisa guide for interpreting them:

7.0.1 d3
N

Version number Pre-release stage

Thefirst digit in the version indicates the major release number (e.g., 7, as
shown above). Thiswould mean the 7th release of the program in which major
changes were made.

The second digit is the minor release number (e.g., O, in the example). In this
case, there were no changes to warrant increasing the minor release digit since
the 7.0 version. When enough minor changes occur, the major release digit
increases.

Continued . . .

1: USING THE OMM

About Version Numbers (continued) . . .

The third digit is the maintenance level (e.g., 1, in the example). Thisindicates
very minor corrections made to the program. When enough maintenance fixes
occur, the minor release number increases.

If the program version is not for public release, it includes a pre-release stage
version. This beginswith a code letter:

d in-house devel opment version (not yet released)
a alpharelease (for a small group of testers)
b beta release (for a larger group of testers)

Following the letter is a pre-release stage number. In the example on the
previous page, 7.0.1d3 indicates that the programis the 3rd devel opmental
version for the 7.0.1 release. It will go through alpha (e.g., 7.0.1a8) and beta
(e.g., 7.0.1b12) stages. After all the testing is complete, it will drop the pre-
release numbers to become thefinal 7.0.1 version, or the first maintenance
release of the 7th major version of the program.

OMM The OMM provides the programmer with the following com-
mands, accessed through the ampersand (&) feature of A pplesoft
Commands ¢
& LOAD CGET Gets modules from disk into memory.
& LOAD PRI NT Prints atable of the loaded modules.
& LOAD FRE Removes modules from memory.
& LOAD NOTRACE Turnsoff reporting of loading and

unloading activity.

LOAD TRACE Turns on reporting of module loading and
unloading.

LCAD PEEK Peeks at various Loader information.

LQAD CALL Calsamodule, passing various param-
eters.

Ro

Ro Ro

These commands are described next. Refer to Appendix E,
“BASIC Syntax” for a description of the various types of
parameters that can be used by ampersand commands.

10

1: USING THE OMM

LOAD GET

& LOAD CGET strexp [,nunmvar] [AND ...]

To bring modules from disk into memory, use the LOAD
GET command. strexp isastring expression containing the
pathname to a module. Modules have afiletype of REL
($FE) on disk. Should an error occur (such as the module not
being found), the appropriate error is generated through
BASIC. You cantrap for any disk errors using standard
Applesoft ONERR handling.

To load modules without error reporting, use the optional
numeric variable, numvar, method:

& LOAD CGET "nodul e", N

Thistellsthe OMM to return disk errorsin the result variable, N.
If no error occurs, zero isreturned. Any non-zero resultisan
error as described in Appendix D, “Error Codes.” Itisuptoyou
to handle errors when using this method.

A program can make as many LOAD GET calls as needed to
load the modules, but it may aso specify alist of modulesin one
LOAD GET cdl by using the AND keyword. Example:

& LOAD GET "nodul e1" AND "nodul e2" AND "nodul e3"
Thisisaso vdid:

& LOAD GET "nodul el", RL AND "nodul 2", R2

Up to 24 modules can be loaded into memory at any onetime.
NOTE: If an attempt is made to load a module with an ID of a
previously loaded module, a DUPLICATE FILE NAME error
occurs (or a result variable contains 19).

This command must be used from deferred mode (whilein a

running program). Attempting to use it from immediate mode
returnsan ?ILLEGAL DIRECT ERROR.

11

1: USING THE OMM

LOAD PRINT

To display atable of loaded modules, use:
& LQAD PRI NT
A typical table might look likethis:

| =$0000 L=$0800 A=$9200 14-Nov-91 OW 1.3

| =$7761 L=$0D00 A=$8500 17-Cct-91 AnperWrks 3.0

| =$776D L=$0A00 A=$7B00 13- Nov-91 ModemMrks 3.0

| =$7474 L=$0300 A=$7800 12-Nov-91 TinmeGS 1.0

| =$7463 L=$0500 A=$7300 13-Nov-91 Console 1.0

| =$6D74 L=$0200 A=$7100 13-Nov-91 Termnal 1.0

| =$735D L=$0300 A=$6E00 12- Nov-91 Store256 1.0

| =$7470 L=$0500 A=$6900 12-Nov-91 Serial GS 1.0

| =$746D L=$0500 A=$6400 13- Nov-91 Intel 9600EX 1.0

OO Ul WNEO

Y ou can select the numeric format used by includingaO or 1
argument:

& LOAD PRINT 0 : REM O sel ects DECI MAL f or mat
& LOAD PRINT 1 : REM 1 selects HEX format (defaul t)

When an argument is given, nothing is printed—the formatting
mode is set for subsequent & LOAD PRINT displays.

LOAD FRE

12

To remove amodule from memory, use LOAD FRE:
& LOAD FRE numexp

where numexp isthe ID of the module. The ID can also bethe
index number. For example, the AmperWorks module shown in
the table above could be freed using either of these commands:

& LOAD FRE 1
& LOAD FRE 30561

The index number is 1, and the ID number for AmperWorksis
30561 ($7761). ThelD of amodule will always be greater than
255, so anything less than 256 is considered the index of aloaded
module.

1: USING THE OMM

To remove everything—the OMM and any modules—use:
& LQAD FRE

When the ID argument is omitted, an ID of zero is assumed.
This shuts down the OMM and all modules|oaded. Index O
references the Loader itself, and when the Loader goes, every-
thing goes.

LOAD Each time amodule is loaded with LOAD GET, or removed with
TRACE/ LOAD FRE, the OMM displays the modul€' s information entry.
NOTRACE To show a modul€'s entry when loaded or removed, use:
& LOAD TRACE
To keep the OMM “silent” when modules are loaded or
removed, use:
& LOAD NOTRACE
LOAD PEEK LOAD PEEK obtains OMM information about loaded modules.

It requires a number to specify the type of information desired.
Additional arguments may be needed depending on the type of
information requested. Examples:

& LOAD PEEK O, N

LOAD PEEK O returns a count of loaded modules into the
numeric variable which follows.

& LOAD PEEK 1, ID, A$

LOAD PEEK 1 returnsamodul€e sinformation entry. The
module isidentified by ID (or index), and the entry isreturned in
adstring variable. If aninvalid ID or index is specified, an empty
string isreturned. The numbers are in hexadecimal, unless the
&LOAD PRINT 0 command is used first.

13

1: USING THE OMM

LOAD CALL

Thisis an advanced OMM command, typically used when
testing amodule in development. Use LOAD CALL to passa
message and a function number to amodule from within BASIC.
(Messages and functions are discussed in Chapter Two, “Build-
ing A Module’). Example:

& LOAD CALL I D, message, function [, ...]

This command requires at |east three arguments:. the ID (or
index) of the module, a message code number, and afunction
number. |If the intended function requires any extra parameters
they can be included as needed.

Sample
Programs

14

The sample program below illustrates the process of working
with amodule once the OMM isactive. It usesthe HexDec
module to perform hex-to-decimal and decimal-to-hex number
conversions. When done, it removes the HexDec module.

100 & LQAD GET "/ Ow Modul es/ HexDec"

110 PRINT : PRI NT "HexDec nodul e | oaded"

120 PRINT : INPUT "Enter a decinmal nunber: ";D
130 & HEX(D), H$

140 PRINT "The hex equivalent of ";D" is $";H$
150 PRINT : INPUT "Enter a hex nunber: $";H$
160 & DEQ(H$), D

170 PRINT "The deci mal equivalent of $";H$;" is ";D
180 PRI NT

190 & LQAD PEEK 0, LAST

200 & LOAD FRE LAST

210 PRINT : PRI NT "HexDec nodul e rel eased"

Additional sample programs can be found on the OMM diskette.

CHAPTER TWO

Building A Module

This chapter isfor assembly language programmers interested in
creating their own modules for use with the OMM. The OMM
is perfect for the Applesoft programmer with machine language
routines in excess of 200 bytes. Entire integrated systems can be
built based on the OMM.

OMM
Features

Cooperating with ProDOS 8 and ProDOS BASIC, the OMM
offers these services.

M anages machine language routines (code modul es)
Allows code modules to peacefully coexist in memory
Makes efficient use of memory

Protects program modules from being overwritten
Quickly relocates modules from disk into memory
Allowsfor loading and unloading of modules as needed
Provides intermodule communication (IMC) technology
Includes utility routines useful to most modules

Supports built-in ampersand command parsing
Dynamically rel ocates modules to reclaim unused memory
Compatible with ProDOS, BASIC.System, and A pplesoft

o

The OMM does some neat things that, until now, could not be
integrated into the operating system under ProDOS BASIC. The
ability to parse ampersand commands makesit easy to add
machine language routines to Applesoft. And, since modules
can communicate with one another, the possibilities are endless
for ahighly integrated environment.

Module
Format

A module follows a specific internal format, composed of four
major parts.

Header

Code section

Immediate mode reference table
Data section

ST

15

2: BUILDING A MODULE

A condensed layout of atypica module would follow this source
code outline:

HEADER equ * ; 16-byte (version 0) header
START equ * :start of nodul e code
db $00 ;code ends with a $00 byte
I MMED equ * ;immedi ate node table starts
dw $0000 ;ends with two $00 bytes
DATA equ * ;data section starts
END equ * ;end of nodul e

(For example purposes, db is an assembler pseudo-opcode that
defines one byte. The dw pseudo-opcode defines one word —
two bytes or 16-bits.)

Header

16

The header consists of eight fields. Each field is 16-bitsin size:

HEADER equ * ;start of header

hVERS dw $0000 : Loader header version

hl D dw $7475 ; 16-bit uni que | D nunber
hSl ZE dw END- START ;size of the nodul e

hORG dw START ;origin at start of nodul e
hAMPC dw AMPERCT ; anper sand command t abl e
hKIND dw $0000 : modul e ki nd

hRSRV1 dw $0000 ;reserved for future use
hRSRV2 dw $0000 ;reserved for future use

hVERS. Normaly $0000. If your module usesinline, two-byte
BRK instructions, use aversion of $0001.

hiD. A unique 16-bit ID number that identifies the module.

hSIZE. The size of the module (not including the header). This
Is easily computed at assembly time by using labels at the
beginning (START) and end (END) of your program to calculate
the difference.

2: BUILDING A MODULE

hORG. Thevaue of the program counter at the START of the
module. Thisvalue must always be page adigned. Thismeans
that the code at START must begin on a page boundary ($1000,
$1100, $4600, etc., where the low-byte of the address is zero).
To do thiswith most assemblers, set the ORG to avalue like
$OFFO before the header. The modul€’ s header, being 16 bytes,
places the code at the START of the program at $1000.

hAMPC. The address of an optional table of data and tokens for
processing ampersand commands. If no ampersand parsing isto
be done for the module, set thisfield to $0000. If atable address
isgiven, thetableitself islocated in the data section of the
program and must follow this format:

AMPERCT asc " TYPE
db $00
asc ' SPOAL!
db $00
db $FF

(asc is apseudo-opcode that inserts a stream of characters).

Each command name(i.e., “TYPE” or “SPOOL") isstored as
ASCII text (MSB off), and is terminated by a$00 byte.
Applesoft tokens can be used in addition to ASCI| text strings.
The tableitsaf isterminated by one $FF byte.

hKIND. Use $0000 — the OMM currently supportsasingle
format.

hRSRV1and hRSRV2. Reserved for future use. They both
should be $0000.

Code
Section

The code in the START segment of the module cannot contain
any data storage. Only valid opcodes and their operands can be
present. In addition, you cannot make immediate referencesto
labels within the program, as they cannot be resolved correctly
by the OMM’s code relocator. The end of thissectionis
terminated by a $00 byte (or BRK). Thisinformsthe relocator
that the immediate mode table begins.

17

2: BUILDING A MODULE

NOTE: If your module has a version 1 header (hVERSIis
$0001), the code section ends with three (3) zero bytes.

Immediate
Mode
Table

N\

The IMMED table consists of two-byte addresses that reference
locations within the module (between START and END). The
table ends with two $00 bytes. This allows code to access labels
within the module using absolute references.

CAUTION: An immediate referenceto alabel within a
moduleis not allowed:

| da #<LABEL this is NOT al | owed!
| dy #>L ABEL ERROR ERRCR

LABEL equ *

The OMM code relocator cannot resolve internal immediate
references. To therelocator, it gppears that the code is Ssmply
loading the A and Y registers with two constant values—
whatever the assembler assigned to them. Since LABEL can be
located anywhere in memory at runtime, the value stored in Y
will beinvalid. To overcome this, the address of LABEL can be
stored in the IMMED table:

I MMED equ *
a_LABEL dw LABEL

The code can now load A and Y with the runtime address of
LABEL using absolute references to the two bytesat a LABEL.:

| da a LABEL
| dy a LABEL+1

Data
Section

18

The DATA section can contain anything. The relocator does not
touchit. Codeisstoredinthe DATA section may not run
properly if it makes references within the module. Code can be
stored here aslong as it makes no referencesto itself (other than
conditional branches), or makes references to locations outside
the module (e.g., ProDOS, Applesoft, monitor ROM, etc.).

2: BUILDING A MODULE

IMC

The OMM features a technology called intermodule communi-
cation (IMC). IMC alows modules to send messages to each
other to exchange information or to initiate special tasks. The
OMM itself makes use of thisin order to instruct the module to
perform certain OMM-related tasks, such asinitiaizing itself

after it has been loaded into memory.

This assumes, of course, that the module begins with code to
process commands and messages from the OMM (or other
modules). At the START of atypica module, the following
codeisincluded to operate correctly in the OMM environment:

START cnp #MSG_AWPR
beq doanpr

cnp #MBG_| NFO
beq doi nfo

cnp #VMBG INT
beq doi ni t

cnp #MBG QU T
beq doquit ;yes

section).

; anper sand commrand?
;yes

;get INFO string?
;yes

;INIT request ?
yes

; QU T request ?

(Thevauesfor the MSG constants are kept in an
interface file that the source brings into the assembly
before this point. They’re discussed in the next

The OMM calls amodule with acommand code in the
accumulator (A-register), and it isup to the moduleto
service the command based on the message being
sent. While there are many different
kinds of messages that a module may
elect to service, al modules must be
able to service the INFO message.

19

2: BUILDING A MODULE

Messages

20

The messages that the OMM may send are:

MSG INIT Initialize module

MSG QUIT Quit (shutdown) module

MSG_AMPR Execute ampersand service routine
MSG_USER Intermodul e service request

MSG REL1 Alert module that it is about to be rel ocated
MSG REL2 Alert module after it has been relocated
MSG KILL Notification that amoduleisto bekilled
MSG _DIED Notification that amodule just died
MSG_BORN Notification that a module has just been born
MSG_IDLE Idle event for module (not implemented yet)
MSG_INFO Asks module to return an information string

MSG_INIT ($00)

A module receivesthe MSG_INIT message from the OMM as
soon asit is established into memory. The module can usethis
opportunity to set itself up before handling other messages. This
is the second message that the module will get, the first being the
MSG_INFO message.

MSG_QUIT ($01)

Thisisthe last message a module gets beforeit is removed from
the system. The module should close any open files, and disable
interrupt sourcesit turned on. In essence, it must clean house
and put all the toys away. In doing this, it may instruct other
modules to prepare for its demise by passing information to
them.

MSG_AMPR ($02)

If an ampersand command is encountered in Applesoft, control
passes to the OMM where it attempts to locate the command in
tables in each module. When found, the OMM sends the
MSG_AMPR message to the corresponding module.

The Y -register contains a number that denotes the index of the
ampersand command inthe table. If Y is zero, thefirst com-
mand in the tablewasissued. If Y werefive, then the sixth

2: BUILDING A MODULE

command in the table had been encountered. In this manner, Y
can be used as an index into atable of addresses for ampersand
service routines.

MSG_USER ($03)

When another module wants to communicate vialMC, it
performs the following steps:

| dx nodul el ndex ;X = index to the nodul e
| dy #A FUNCTI ON ;Y = a user-defined function
jsr OMWEC :call the OwW

The X-register holds the index of the module to receive the
message. (Obtaining an index to amoduleis discussed later).
The Y -register holds avalue that is passed to the module. This
value is known by both the calling module and the receiving
module. The receiving module’s START code would detect the
MSG_USER code in the A-register, pass control to its handler,
which services the function based on the number inthe Y -
register.

MSG_REL 1 ($04)

When amoduleis purged, any modulesthat are to be rel ocated
tofill in the gap are sent the REL 1 message. Thismessageis
sent before the rel ocation begins. The module can take the
opportunity to do whatever is necessary to allow the OMM to
relocate the module properly. It may aso use thistimeto inform
other modules that it is about to move, in case the other modules
may expect the to-be-rel ocated module to stay in place dueto
absolute references. The module may aso wish to remove any
interrupt vectors allocated to it at thistime.

MSG_REL2 ($05)
After amoduleisrelocated it receives the REL2 message. The

module can basically reverse the steps taken for the MSG_REL 1
event in order to return to its norma state.

21

2: BUILDING A MODULE

22

MSG_KILL ($06)

This messageis sent to al loaded modules just prior to amodule
being freed, including the to-be-killed module. Thisallowsal
the modules to cooperate in whatever measures are necessary to
prepare for the loss of amodule which is still aive at this point.

Upon entry, the Y register will contain the index to the module
being freed.

M SG_DIED ($07)

After amodule is removed, this message is sent to all loaded
modules. If amodule used IMC with the dead module, it will
know that isno longer in the system, and no further IMC calls
can be madeto it.

Upon entry, the Y register will contain the index to the module
that was freed.

Each module using IMC should call the OMM to get new
indexes for the remaining modules for which it requires indexes.

WARNING: Indexes shift when a module isfreed. If a module
assumes that an IMC index is valid, the systemwill probably
crash. Itisimportant to call the OMM to get new indexes
after any moduleisfreed. Thiscan only be done safely after
receiving a MSG_DIED message.

MSG_BORN ($08)

After anew module has been loaded, the BORN message is sent
to all loaded drivers (including the one just loaded). The unique
16-hit ID of the new moduleis placed at $3C.

Upon entry, the Y register will contain the index to new module.

At thistime, each module using IMC should call the OMM to
get indexes for the modules for which it requiresindexes. In this
manner, the |oading sequence of modules can be completely
arbitrary, yet all modules will know when new ones cometo life.

2: BUILDING A MODULE

MSG_IDLE ($09)
Thismessageis reserved for future use.
MSG_INFO ($0A)

The OMM sends the INFO message to a module immediately
after it isloaded. All modules must service thisrequest for the
OMM to operate correctly. The module should perform only
one task at thistime, and that is to place the address of an
information string into locations $3C and $3D and return.

The information string contains the revision date, title, and
version of the module, in high-order ASCII (bit 7 set) using the
following format:

16- May- 90 AnperWrks 3.0

The version number should follow format of version numbers as
described in Chapter One.

The string and the MSG_INFO handler must remain intact and
unmodified for the duration of the modul€e slifein memory, asit
can be requested at any time.

Utility
Functions

To modules, the OMM itself appearsto be amodule. Using
IMC, modules can cal upon utility routines built into the OMM
to smplify common tasks:

OMM_GETID Getsthe index of amodule based on 1D
OMM_XOAMP Executes original ampersand vector
OMM_FREE Freesamodule

OMM_PUTWORD Storesaword valueto aBASIC variable
OMM_PUTSTR Stores astring to aBASIC variable
OMM_GETSTR Gets the descriptor of a string expression
OMM_PADDEC Printsaword in decimal, right justified
OMM_C2PSTR Copies string to a Pascal formatted string
OMM_COUNT Returns the count of loaded modules
OMM_GETINFO Getstheinfo string of amodule

23

2: BUILDING A MODULE

These functions are performed by calling the OMM just asyou
would call another module. The OMM'’sindex is represented by
the assembler equate called OMM_ID ($00). Calsto the OMM
are made by caling OMMVEC ($3F8). Example:

| dy #f uncti on 'Y = OWI functi on
| dx #OW | D ;X = OW i ndex
jsr OMWEC :call the OW vect or

Some functions require arguments or return argumentsin
memory locations, flags, or registers.

OMM _GETID ($00)

For amodule to communicate with another, it must be ableto
tell the OMM which module it wishesto reference. Thisisdone
by using the loaded modul€ sindex. A program can obtain the
index for amodule by asking the OMM to look it up based oniits
unique ID. To obtain theindex, placethe ID of the module into
locations $3C and $3D, and then call the OMM with the
OMM_GETID function.

Getting a Number from BASIC

A function for obtaining the numeric value from an Applesoft expression or
variable is not included in the OMM’ srepertoire since it is easy to do this
using two methods listed here:

CETBYTE ; ($E6F8) Put 8-bit value into X
FRVNUM ; ($DD67) Eval uates a 16-bit nunber
GETADR ; ($E752) Stores word at $50 and $51

also: Y =1low byte, A= high byte

24

2: BUILDING A MODULE

For example, to obtain the index for the Amper\WWorks module,
the following code can be used:

| da # a ; AnperVorks IDis ‘aw
sta $3C ; (or $7761)

| da #w

sta $3D

| dy #OW CETI D ;Y = function nunber

I dx #OW | D ; X = AW i ndex

jsr OMWEC ;call the QW

St x awl ndex ; save t he index

If the ID was found, the modul€ sindex isreturned in the X-
register and the carry flag isclear. The OMM returns with $00
inthe X-register and the carry flag set if the ID search fails.

OMM_XOAMP ($01)

This function causes the OMM to call the address of the original
ampersand handler installed before the OMM was launched. It
isincluded in case your module does further ampersand parsing,
then discovers that the command the user has given is not one of
itsown.

OMM_FREE ($02)
A module can instruct the OMM to free another module by

placing the index of the module to purge at location $3C.
Example:

| da awl ndex ;get rid of Amper Wrks
sta $3C ;put the index here

| dy #OW FREE ; free function nunber

| dx #OW | D :the OW s i ndex

j sr OMWEC :call the OwW

WARNING: OMM_FREE should never be used by a module
that resides lower in memory than the module to purge. When
the OMM is finished rel ocating the remaining modules,
control returnsto the calling module. If the module has
moved, the return addressisinvalid, and the system crashes.

25

2: BUILDING A MODULE

26

N\

CAUTION: This function should be avoided, unless you really
know what you’ re doing, as the order in which modulesare
loaded cannot be safely assumed. It ispossible to push a valid
return address onto the stack (e.g., the RESET handler at
$FAG62) and then IMP to OMMVEC. Thisensuresa valid return
address and no crashing after removing a module.

OMM_PUTWORD ($03)
To store anumeric value to an Applesoft variable (pointed to by

the Applesoft text pointer), the OMM_PUTWORD function can
be used. Example:

lda #5 ;store a 5 (1 ow byte)
sta $3C

lda #0 ;zero (high byte)

sta $3D

[dy #OwW PUTWORD

l[dx #OWLID

jsr OMWEC

Store the value into locations $3C and $3D. If abyte valueisto
be stored, put the byte into $3C and write $00 to $3D.

OMM_PUTSTR ($04)

To store string data to an Applesoft variable pointed to by the
text pointer, usethe OMM_PUTSTR function. It requiresa
string descriptor at location LOWTR ($9B). A string descriptor
conssts of three bytes of information: alength byte, and two
bytes that point to the first character of the string. Example:

| da #15 ;store 15 characters

sta $9B

| da #$200 ;location is at input buffer
sta $9C

| da #>$200

sta $9D

| dy #OW PUTSTR
| dx #QOW | D
jsr OMWEC

2: BUILDING A MODULE

f OMM_GETSTR ($05)

This function evaluates the string expression at the Applesoft

text pointer and returnsits descriptor in location LOWTR ($9B).
LOWTR will hold the length of the string, and at LOWTR+1isa
two-byte pointer to the first character in the string.

,|: OMM_PADDEC ($06)

Printing avalue in decimal, right-justified (Space-padded), isa
chore for any machine language program. This function makes
it easy. Put thewidth of the field, in which the number should be
padded, into location LOWTR ($9B). Put the value into
locations $9C and $9D (LOWTR+1). Then make this function
call. After printing the number through COUT, the cursor
followsthe last digit printed.

.I: OMM_C2PSTR ($07)

Copiesastring of charactersto abuffer that will begin with a
count byte, followed by the string itself. In other words, it makes
a Pascal-formatted string. These are used frequently when
dealing with ProDOS pathnames.

The descriptor of the source string is stored at LOWTR ($9B),

whichisacount byte followed by atwo-byte pointer to the

string. Put the target buffer address into locations $3C and $3D.
,|: OMM_COUNT ($08)

This function returns the count of the loaded modulesin the A-
register.

Tip: Integration With Many Modules

If your module must keep track of indexes for one or more modules, have it
service the MSG_BORN and MSG_DIED messages by a single routine.
That routine would simply call the OMM to obtain indexes for the modules
it desires with the OMM_GETID function.

27

2: BUILDING A MODULE

OMM_GETINFO ($09)

Use thisfunction to obtain the info string from amodule. Before
making the call, put the modul€ sindex (not D) number in the
byte at $3C:

| da nodul el ndex
sta $3C

| dy #QW CGETI NFO
| dx #OW | D

jsr OMWEC

On return, $3C and $3D contains a pointer to the requested
modul€ sinfo string.

Interfaces
& Sources

The OMM disk comes with interface files containing equates for
the OMM. If you use ORCA/M or APW, the ORCA directory
contains afile called OMM.EQU with al the equates you need.
If you use Merlin, the MERLIN directory containsthe OMM.S
file with equatesfor Merlin.

Source code templates for your own modules can be found in the
ORCA (TEMPL.ASM) and MERLIN (TEMPL.S) directories.
These are skeleton programs with a“fill in the blanks” format to
make it easier to create new modules. Also included in these
directoriesis a sample program module (hex/decima number
conversion) with sources for both ORCA/M and Merlin.

Buffer
Space

28

Modules should include internal buffersfor space needed during
the course of their lifetime. Thisisdone by defining storage at
assembly time. However, it may be safe to alocate dynamic
buffers at runtime by calling ProDOS BASIC's“ GetBufr”
routine, but only if the buffer is used temporarily and then
discarded with “FreeBufr” between OMM service calls. Long-
term preservation of a buffer allocated through ProDOS BASIC
Is not guaranteed due to the nature of the OMM and the way it
dynamically manages modules.

2: BUILDING A MODULE

Absolute
References

A\

Care should be taken when an absol ute reference ismadeto a
location within amodule. Since modules are “dippery”, pointers
to dataitemsin other modules may become invalid.

CAUTION: Pointersto interrupt service routines (in modules
that have been moved) can have disastrous effects.

Whenever possible, al communication between modules that
share common data should use the IMC to transfer pointersto
dataitems. When modules shift, utilize IMC to update the
pointersfor those dataitems. The OMM provides mechanisms
for updating absol ute references in movable code with the REL 1
and REL 2 messages.

Opcode
Usage

Y our programs can use 6502, 65C02, and even 65816 instruc-
tions. But, 65816 programmers note that the OMM cannot
properly relocate 65816 code that uses the 16-bit immediate
mode references for the accumulator and index registers. Itis
possible to place such code into the data section where it will
execute correctly, so long it does not use absol ute references to
locations within the module.

If you need to use a BRK instruction in your code section, be
sureto use aversion 1 header (WWERS = $0001). Format
considerations of averson 1 module are the same asfor version
0, except that the end of the code section ends with three zero
bytesinstead of one. Also, inline BRKs occupy two bytes, not
just one. Usersof the 6502 and 65C02 should, therefore, use
two BRK instructionsin arow. 65816 programmers should use
the standard two-byte BRK instruction.

NOTE: Programsthat include 65816 opcodes will relocate
properly even when run on a CPU that does not support
65816 instructions. The OMM allows you to put CPU
dependent code into your programs. You must, however,
make sure that the program can run on the machine in use.

29

2: BUILDING A MODULE

30

CHAPTER THREE

AmperWorks

This chapter describes AmperWorks, an OMM module provid-
ing extended commands for Applesoft. Using AmperWorks
commands in your BASIC programs can speed them up
dramatically, aswell as provide functionality that isimpossible
or difficult to do with BASIC aone.

Introduction

Most AmperWorks commands are stored in the AmperWorks
module. Usethe OMM’s &LOAD GET command to load it
into memory.

A few AmperWorks commands are kept in other modules. For
example, the string storage commands (e.g., & STORE and

& RESTORE) are found in Store256, Store512, and StoreGS.
The & TIME command is kept in the Time and TimeGS mod-
ules. If your program will use these commands, decide which
module is best for your computer and use & LOAD GET to load
it into memory.

Abbreviations are used for different types of arguments that
AmperWorks commands require. Refer to Appendix E,
“BASIC Syntax”, for an explanation of the abbreviations.

®,

N

31

3: AMPERWORKS

Command
Summary

32

AmperWorks consists of the following commands:

/

\

<

ADD
ASC
COPY
ERASE
FILES
GET
HLIN
LCASE
LEFT$
LIST
MID$
MLI
ONERR
POKE
POP
POS
PRINT
READ
REPT
RESTORE
RESTORE GOTO
RIGHT$
SPC
SRT
STORE
STORE CLEAR
SWAP
THLES
TIME
UCASE
UNTIL
VAL
VLIN

Get file information

Set fileinformation

Return the parent path of afile

Add afileto the end of another file
Convert astring to ASCI| text

Copy afileto another file

Erase an array from memory

Put adirectory’ sfilenamesinto an array
Get charactersinto astring

Draw a horizontal line with acharacter
Convert astring to lowercase

L eft-justify astring within afield
Display the contents of afile

Change the mid-portion of astring
Perform a ProDOS ML function

Fix ONERR bug and get error information
Poke alist of valuesinto memory

Reset Applesoft’ s stack

Find a pattern within astring

Print to the screen during file output
Read charactersinto astring

Start aREPT-UNTIL loop

Restore astorage cell to astring

Set the next DATA statement line number
Right-justify astring within afield

Strip spaces from the ends of astring
Sort an array

Store astring into a memory storage cell
Erase dl stringsin storage

Swap the values of two variables

Put adirectory’ sfilenamesinto an array
Return the date and time

Convert astring to uppercase

Mark the end of aREPT-UNTIL loop
Evaluate an expression and return the result
Draw averticd linewith acharacter

3: AMPERWORKS

/
(Get Info)

&

& [strexp, strvar

Getsinformation on the file described by strexp. Eighteen
characters of information are returned in strvar. If strvar comes
back empty (equal to “”), then the pathname was invalid or non-
exisent. Thisisuseful asan alternativeto ProDOSBASIC's
VERIFY command.

The information returned follows the structure of ProDOS's
GET_FILE_INFO parameter table. Since the information string
contains control characters, your programs can convert their
ASCII values to meaningful numbers.

MID$ (INFOS$, 1,1) = Parameter Count

MID$ (INFOS$, 2,2) = Address of Pathname

MID$ (INFOS$, 4,1) = Access Bits

MID$ (INFOS$, 5,1) = Filetype

MID$ (INFOS$, 6,2) = Auxiliary Filetype

MID$ (INFOS$, 8,1) = Storage Type

MID$ (INFO$, 9,2) = Blocks Used

MID$ (INFO$,11,2) = Modification Date

MID$ (INFO$,13,2) = Modification Time

MID$ (INFO$,15,2) = Creation Date

MID$ (INFO$,17,2) = Creation Time

33

3: AMPERWORKS

Sample Program

10 & / "/ GRACELAND LM S*, | $
20 IF 1$ ="" THEN PRINT "H vis taken by aliens!"
30 IF1$>"" THEN PRNT "Hvis lives!"

NOTE: To use a partial pathname, the ProDOS prefix must
be set.

Also See
\

\
(Set Info)

&

34

& \ strexp, strvar

Setsinformation on the file described by strexp. Eighteen
charactersin strvar must follow the structure of ProDOS's
SET_FILE INFO parameter table (asillustrated on the previous

page).
Sample Program

10 & / "DONNLQAD', 1$: REM Get info on DONNLQAD
20 & MD$ (1'%, 5 = GRH(6): REM Change fil etype
30 &\ "DOMLQAD', |$: REM Set info on DONNLQAD

Sample Run

Line 10 getsfileinformation on DOWNLOAD and placesit into
I$. Line 20 changesthefifth character in I$, the filetype field for
the ProDOS SET_FILE INFO parameter list. Line 30 uses &\
to set new information on DOWNLOAD. The ASCII value of 6
used in Line 20 sets DOWNLOAD to aBIN file.

NOTES AmperWorks ignores the first three characters of the
information string since they may have different meaningsin
future versions of ProDOSBASIC. To use a partial pathname
with this command, the prefix must be set.

Also See
/

3: AMPERWORKS

<

(Parent
Directory)

&

& < strexp, strvar

Separates the prefix from the file name in the complete
pathname specified by strexp. The sample program demon-
stratesits features.

Sample Program

10 PN$ = "/a/dev/imwinstall"

20 PRI NT "Pat hnane:", PN$
30 & < PN$, P$

40 PR NT "Path:", P$

50 N6 = M DS (PN$, LEN (P$) + 2)
60 PRINT "Nane:", N$

] RN

Pat hnane;: [al dev/ mw/ i nst al |
Pat h: [a/ dev/ nw

Nane: i nstall

ADD

& ADD (strexpl TO strexp2)

Appends the filename described by strexpl to the filename
described by strexp2. If thetarget file does not exigt, it is created
and the contents of the sourcefile are copied. Any filetype of
any size may be added—the target file retainsits original file
information. The ProDOS prefix must be set in order to use a
partial pathname.

Samples

& ADD ("/ramtenmp" TO "/disk/logfile")
& ADD (FI LE$(1) TO FILE$(2))

If the disk becomes full, the target file is not deleted, nor isit left
with part of the source file gppended to it. AmperWorks leaves
the target file unchanged in the event of adisk error.

Also See
COPY

35

3: AMPERWORKS

ASC

&

& ASC strvar

Convertsthe charactersin a string variable to standard ASCI|
values (the high-bits are cleared). Thisisuseful for programs
working with strings containing non-ASCI| characters.

COPY

&

& COPY (strexpl TO strexp2)

Copies the filename described by strexpl to the filename
described by strexp2. If thetarget file exits, it is overwritten.
Any file of any type and size may be copied. The ProDOS
prefix must be set in order to use a partial pathname.

Samples

& CCPY ("/dev/test™ TO "/dev/test.bak")
& COPY (TAKEMEQUT$ TO THEBALLGAVES)

If the disk becomes full during a COPY , the operation is
cancelled and the target file will not exist.

Also See
ADD

ERASE

36

& ERASE (arraynane)

Removes an array (of any kind or dimension) from memory,
allowing you to create and erase arrays as needed, giving your
programs additional free memory. ERASE requires the name of
an array only—no subscript isrequired.

Sample Program

10 DI M F$(300)

20 & FILES ("/RAMG", F$), N

30 GO8UB 1000: REMWirk with the F$ array

40 & ERASE (F$): REM Now erase it from exi stence

3: AMPERWORKS

FILES

& FILES (strexp, strvar [, numexpl, numexp2?]),
nunvarl [, nunvar 2]

Reads filenames from the directory described by strexp and
stores them in an array described by strvar.

The number of names placed in the array isreturned in numvar1,
and the actual number of filesresiding in the directory (matching
any selection criteria) isreturned in the optional numvar?2. strvar
must be DIMensioned before using FILESto avoid an OUT OF
DATA ERROR.

The optiona numexpl is afiletypefilter, used as search criteria
If numexp is 255 for example, only SY S-type names are placed
inthe array (the numeric value for aSY Stem fileis 255). If
numexp is a negative number, the logic isreversed, placing al
namesin the array except for those having types equal to the
absolute value of numexp. For example, to gather al the names
that are not subdirectories (type 15), numexp would be - 15.

The optional numexp2 isan invisibility filter code:

0 Includevisblefilesonly (default)
1 Includeadl files
2 Includeinvishblefilesonly

Example
& FILES ("/A", F$, , 2), N

Thisreads dl invisble namesfound on /A, placing them into the
F$array. The count isreturned in N. Since the type filter option
isomitted, all typesare possible. If you include atype of 4
(TXT), itfindsal invisible text files.

FILES cannot be used in immediate mode since the contents of
the input buffer are destroyed. The ProDOS prefix must be set
in order to use apartial pathname.

Also See
TFILES

37

3: AMPERWORKS

GET

&

& CET [(numexp [,strexp])] [,"..."] [,strvar]

Gets data from an opened file. AmperWorks GET issimilar to
Applesoft’s, except it dlows input of multiple characters,
including commas, colons, and quotes. And unlike Applesoft’s
INPUT, it does not affect the display. Input isterminated after a
carriage return is entered, or when the character input count
reaches 255 (or the optional numexp limit). It follows the same
format for its arguments as discussed in the & READ command.

Samples

& GET A :REM CGets up to 255 characters into A$

& CET (5) :REM Gets 5 characters (discarded)

& CET (1),"Any Key" :REM Gets 1 character w pronpt
& CET (0),"Press Return® :REMWaits for a RETURN
& CGET (15),"Code:",A3 :REM Gets up to 15 into A$

Also See
READ

HLIN

38

& HLI' N nunexpl, numexp2

Draws a horizonta line, the length determined by numexpl, with
the character whose ASCII codeis determined by numexp2.
Both arguments must be numeric values from 0 to 255.

Samples

& HLIN 10, ASC("*") * %k k ok ok ok Kk Kk

& HLIN 15, 65 AAAAAAAAAAAAAAA

& HLIN 20,65 + 1 BBBBBBBBBBBBBBBBBBBB

Creative use of &HLIN and & VLIN allows you to quickly draw
boxes and borders.

Also See
VLIN

3: AMPERWORKS

LCASE

& LCASE (strvar)
Converts astring variable' s uppercase |etters to lowercase.
Sample Program

10 A$ = M D$(" Anper Wrks", 1)
20 PRI NT A$

30 & LCASE (A$)

40 PRI NT A$

] RN

Anmper Vr ks
anper wor ks

Also See
UCASE

LIST

& LI ST strexp

LIST displays the contents of the file described by strexp, useful
for with files containing readable text. The listing may be
paused with (_coa -S and restarted with any key. Pressing “esc
stops the listing.

Samples

& LIST "/ mail/nsg. 1234"

& LI ST Fl LE$

This command cannot be used in immediate mode since the
contents of the input buffer are destroyed. The ProDOS prefix
must be set in order to use apartia pathname.

39

3: AMPERWORKS

LEFT$

&

& LEFT$ (strexp, numexpl [, numexp2]), strvar

L eft-justifies a string within a specified width—padding a string
so that its length becomes afixed value. Thisisuseful when
displaying tabular information, or when writing datato a random
accesstext file.

strexp is the source string to be left-justified into strvar. The
width of strvar is determined by numexpl, and isavaue from 1
to 255. Spaces are used for padding, unless the optional
numexp2 is used; its ASCII value becomes the padding charac-
ter. For example, to left-justify a string into a 20-character field
with periods, use:

& LEFT$ (A$, 20, 46), B$
(46 isthe ASCII value for the period character).
If the length of strexp is greater than the field width givenin
numexpl, the contents of strexp are truncated before being

placed into strvar.

Also See
RIGHTS$, SPC

MID$

40

& MD$ (strvar, nunexpl [, nunexp2]) = strexp

Replaces the middle portion of astring with the strexp that
followsthe equal sign. It overlays strvar at the position specified
by numexpl. The optiona numexp2 is the number of characters
to overlay. If numexp2 isomitted, the length of strexpis
assumed. For example, if AS="“"AAAAA”, then the following
changesitto “AZZZA":

& MD$ (AS, 2, 3) = "ZZ7777777"

Also See
POS

3: AMPERWORKS

MLI

& M. (nurmexpl, numexp2), nunvar

Performs a ProDOS Machine Language Interface (ML1)
command specified by numexpl. The address of the MLI
parameter table is given in numexp2. After the MLI command is
performed, the result code is stored in numvar. 1t isuseful for
performing commands that ProDOS BASIC does not already
provide, such asretrieving afile' slength in bytes, reading a
block of datafrom disk, and moving the “mark” (position) in an
open file to anew offset, among many others. Further explana-
tion of the M LI goes beyond the scope of this manual, though
there are many good books on the subject.

Sample Program

10 TBL = 768 : L TBL + 2

20 DEF FN PL(X) PEEK(X) + PEEK(X+1) * 256
+ PEEK(X+2) * 65536

30 PRINT CHR$(4) "CPEN TEST. FI LE, TTXT"

40 REF = PEEK (48848)

50 & PCKE TBL, 2, REF

60 & M.l (209, TBL), ERR: REM Get ECF

70 PRINT CHR$(4) "CLCBE'

80 I|F ERR THEN PRINT "Error: " ERR END

90 PRINT "File's length is " FN PL(L)

] RN

File's length is 32768

MLI Command Hex Dec MLI Command Hex Dec
ALLOC_INT $40 64 GET_PREFIX $C7 199
DEALLOC_INT $41 65 OPEN $C8 200
QUIT $65 101 NEWLINE $C9 201
READ_BLOCK $80 128 READ $CA 202
WRITE_BLOCK $81 129 WRITE $CB 203
GET_TIME $82 130 CLOSE $CC 204
CREATE $CO 192 FLUSH $CD 205
DESTROY $C1 193 SET_MARK $CE 206
RENAME $C2 194 GET_MARK $CF 207
SET_INFO $C3 195 SET_EOF $D0 208
GET_INFO $C4 196 GET_EOF $D1 209
ONLINE $C5 197 SET_BUF $D2 210
SET_PREFIX $C6 198 GET_BUF $D3 211

41

3: AMPERWORKS

ONERR

&

& ONERR [nunvar 1, nunvar2]

Performs two special tasks when placed at the beginning of an
ONERR GOTO error handling routine. Firgt, it fixes the stack
that Applesoft’s error handling leaves corrupted, avoiding
subsequent RETURN WITHOUT GOSUB errorsin subroutines.
Second, if included, the error code is placed in numvar 1 and the
program line where the error occurred is stored in numvar 2.

Sample Program

10 ONERR QOTO 40

20 PRIMI "M sspel | ed PRI NT, dumy!"
30 END

40 & ONERR CCDE, LINE

50 PRINT "Error #"; COCDE

60 PRRNT " in line "; LINE

] RN
Error #16 in line 20

Since & ONERR affects Applesoft’s stack, never issue
& ONERR unless an error has occurred.

POKE

42

& PCKE nurexpl, numexp2 [, nunmexp3...]

Pokes multiple numeric valuesinto consecutive memory
locations starting at the address specified by numexpl. Example:

& POKE 768, 173, 31, 192, 141, 67, 3, 141, ...¢c.

The above example stores 173 at location 768, 31 at location
769, 192 at location 770, and so on. Thisallows small assembly
language programs to be stuffed quickly into memory.

Aslong astheir values are within 0 to 255, you can also POKE
numeric variables and expressions into memory with & POKE.

3: AMPERWORKS

POP

& PCP

Removes all GOSUB-RETURNS, FOR-NEXT loops, and
REPT-UNTIL loops from the stack. By contrast, Applesoft’s
POP statement removes only the most recent GOSUB'’ s “return”
line from the stack. Use POP at any point in your program
where the normal flow has been incorrectly or artificialy

diverted.

POS

& PCS [R GHT$] ([numexp,] strexpl, strexp2), nunvar

Searchesfor apattern within astring. It returns the position of
strexp2 within strexpl starting at the optional numexp argument
(the offset from the start of strexpl). If amatch isfound, the
positionis placed in numvar. If no match isfound, numvar
contains zero. Searching starts at the beginning of the string and
continuesto the end. If the optional RIGHTS keyword is given,
the search begins at the end of the string and works toward the
start of the string.

Sample Program

10 REM This program searches a string for all the
20 REM'e' letters and points to each with a marker
30 A.DP = 0: REMInitialize offset

40 A$ = "The Apple 11 GS Personal Conputer": PRI NT A$
50 & PCS (QLDP + 1, A%, "e"),P

60 |F NOT P THEN END: REM Stop! No nore e's found
70 PRINT SPC(P - Q.DP - 1) "A~";

80 ALDP = P: QOrO 50

] RN

The Apple |1 GS Personal Conputer
N N N

N

Also See
LCASE, UCASE

43

3: AMPERWORKS

PRINT

&

& PRINT [...]

Thisisidentical to Applesoft’ s PRINT, except that it displaysits
arguments to the screen while afile is open for output. Withit,
you can writeto afile and print to the screen without having to
switch off file output.

READ

&

44

& READ [(nunexp [,strvar])] [,"..."] [,strvar]

Reads input until [reum | is entered. Commas, colons, and
guotes, normally refused by Applesoft, are allowed. Unlike
AmperWorks GET statement, READ ignoresall control
characters except for the following:

Code Key Action
8 = Rubout
9 " tab Tab to next position (modulo 8)
13 _rewm | End of input
23 “conmol W Delete word
24 “contol -X Clear input
127 _ delete | Rubout

The optional numexp defines the maximum number of characters
that may beread. If that number isreached, further inputis
ignored.

If the optional strvar isincluded after numexp, word wrap is
enabled. When thetotal number of characters allowed have
been entered, word wrap is performed, stuffing the wrapped

charactersinto the optional strvar.

Sample Program

10 REMWrd Wap Test Program

20 1$ ="": REM Stuff string starts out enpty
30 & REPT
40 & READ (38,19%),":",A$

50 & UNTIL (A$ = "")

3: AMPERWORKS

Sample Run

Text isentered at the“:” prompt. When input reaches column
39, words wrap around the screen to the next line. When this
happens, the wrapped word is stored in |$ while the rest of the
lineissaved in A$. When program flow resumes at Line 40, the
contents of 1$ are stuffed into theinput line, smulating real word
wrap. The program stops when __reun Jis pressed on anew line.

If numexp is negative and a Stuff string is present, the stuff string
is placed into the input line, but word wrapping is disabled.

If numexp is zero, _reun _ iSsthe only key accepted.

If (numexp) is omitted, up to 255 characters may be entered.

NOTE: The optiona prompt string may be used to prompt the
user for input. Thefinal string variable is optiona—input is
discarded.

Samples

& READ A$: REM Reads a line of text into A$

& READ (5) :REM Reads 5 characters (discarded)

& READ (1),"Any Key" :REM Reads 1 character

& READ (0),"Press Return" :REMVWits for a return
& READ (15),"Phone: ",A$: REM Reads 15 into A$

& READ (N), C$: REM Reads N characters into C$

& READ (78, W), L$(1) : REM Reads with wordw ap

Also See
GET

REPT

& REPT

BeginsaREPT-UNTIL loop. A REPT-UNTIL block isagroup
of statements or program lines, surrounded by & REPT and
&UNTIL. The block executes repeatedly until the expression in
the UNTIL statement istrue. These blocks may be nested many
levels deep.

45

3: AMPERWORKS

Sample Program

10 N = INT (20 * RND(1)) + 1

20 & REPT

30 & REPT

40 I NPUT "Quess ny nunber (1-20) "; X

50 & UNTIL (X >= 1 AND X <= 20)

60 |IF X <> NTHEN PR NT "Wong." : FOUNND = 0

70 IF X =NTHEN PRINT "You got it!": FOMND = 1
80 & UNTIL (FOUND)

If you must leave aREPT-UNTIL loop prematurely, it is best to
prime the UNTIL condition, and GOTO the line number where
the UNTIL statement can be found. Aswith FOR-NEXT and
GOSUB-RETURN, branching out of aREPT-UNTIL loop
leaves garbage on the stack, causing your program to misbehave.

Also See
POP, UNTIL

RESTORE

&

& RESTCORE nunexp TO strvar

Retrieves a string from the storage cell identified by numexp,
storing it in strvar. Thiscommand is available only if a Store
module isloaded (e.g., Store256, Store512, or StoreGS).

Also See
STORE, STORE CLEAR

RESTORE
GOTO

&

46

& RESTORE Q010 . ..

Selectsthe next program line where DATA isto be read with
Applesoft' s READ statement. Applesoft’s RESTORE aways
resetsthe next DATA lineto the beginning of your program.
AmperWorks gives you more flexibility.

3: AMPERWORKS

Sample Program

10 DATA A/ B, C

20 & RESTORE GOTO 50
30 READ A$

40 PR NT A$

50 DATA E F, G

] RN
E

Applesoft initially setsthe next DATA lineto thefirst linein this
program. Line 20 uses RESTORE GOTO to change to the next
DATA statement in Line 50. Line 30 usesthe READ statement,
which actually reads DATA from Line 50, even though it has not
read the DATA inLine 10 yet. Instead of “A”, an“E” isprinted,
which proves this sample works.

RIGHTS$

&

& RIGHT$ (strexp, numexpl [, nunexp2]), strvar

Right-justifies a string within a specified width, padding it with
spaces so that the length becomes afixed value.

strexp is the source string, right-justified into strvar. The width
of strvar isdetermined by numexpl, and hasavalue from 1 to
255. Spaces are used for padding, unless the optional numexp2
isincluded; its ASCII value isthe padding character.

If the length of the string is greater than the field width, the
rightmost contents of strexp are placed into strvar.

Also See
LEFTS$, SPC

47

3: AMPERWORKS

SPC

&

& SPC (strexp [, numexp]), strvar

Strips leading and trailing spaces from strexp and stores the new
string into strvar. Spaces are stripped, unless the optional
numexp is given; characters with its ASCII value are stripped
instead.

Sample Program

10 A$ =" This is a test
20 PHN-[- ll[ll; M; ll]ll

30 & SPC (A%), A$

40 PHI\I-I- u[u; A$, u]u

] RIN

[This is a test]
[This is a test]

Also See
LEFT$, RIGHTS$

SRT
(Sort)

48

& SRT (arraynane, nunexp)

Sorts any kind of single-dimension array described by
arrayname (the variable name without a subscript). The number
of elementsto sort is specified by numexp. The array must be
DIMensioned, evenif it hasless than 10 elements.

Sample Program

10 E = 10
20 DM NE)

30 FRI =1 TOE

40 N(1) = INT (200 * RND(1))
60 NEXT

60 & SRT (N E)

70 FORJ =1 TOE

80 PRINT N(J); SPQ(5)

90 NEXT

3: AMPERWORKS

] RN

3 8 34 37 65 118 190 195

STORE

& STORE strexp TO nunexp

Stores a string described by strexp into a storage cell specified by
numexp. Thiscommand isavailable only if a Store moduleis
loaded, such as Store256, Store512, or StoreGS.

Stored datais not erased after running a program, or after typing
NEW or CLEAR. The string is placed into the storage buffer at
the first unused location. Subsequent strings are placed after any
previous strings stored in the buffer. Y ou can store up to 255
strings, as long as the strings do not exceed buffer capacity.

Each string that AmperWorks puts into the buffer includes two
bytes of overhead. Thefirst byteisthe string’sID number. The
second byte isthe length of the string. With Store256, providing
a 256-byte buffer, you could have at least 84 one-character
stringsin storage. Or, you could have only one 254 character
string filling the entire buffer. Storing a null string removes a
previoudy stored string with the same ID. Null strings and their
overhead are not stored, however. They occupy no space.

Strings may be stored with any arbitrary ID numbers from O to
255, and need not be stored in order. Examples:

& STCRE "Foo" TO 100
& STCRE "Bar" TO 20

Restoring a string by its 1D returns the string as long as the string
existsin storage, otherwise anull string is returned. Examples:

& RESTORE 100 TO A$:REM restores "Foo"

& RESTORE 20 TO A% :REM restores "Bar"
& RESTCRE 42 TO A$:REMrestores "" (not hing)
Also See

RESTORE, STORE CLEAR

49

3: AMPERWORKS

STORE & STORE CLEAR
CLEAR Clearsal strings from storage. This command requires a Store
& module to be loaded beforeit can be used.

Also See

RESTORE, STORE

SWAP & SWAP (varl, var?2)
& Exchanges the values of two variables or array eements,
indispensable for sorting and data processing. After SWAPis

executed, the original value of varl is stored in var2 and the
original value of var2 isstored invar1. Bothvarl and var2 must
be of the same variable type—string, integer, or floating point.

Sample Program

10 INPUT "Enter a value for X "; X
20 INPUT "Enter a different value for Y: "; Y
30 & SWAP (X, Y)

40 PRRNT "Now X ="; XX " and Y="; Y
] RN
Ent er value for X 65

a
Enter a different value for Y: 816

Now X = 816 and Y = 65
TFILES & TFILES (strexp, strvar [,numexp]), nunvarl
[, nunvar 2]
& TFILES isidentical to FILES, except filenames placed into the

string array may end with special characters. DIR filesend with
adash (/). BAS, BIN, SYS, and CMD files end with an asterisk
(*). TFILESismostly useful for display purposes.

Also See
FILES

50

3: AMPERWORKS

TIME

& TIME (strvar)

Returns the current day, date and time from the Apple [1GS
built-in clock or ProDOS-compatible clock card. With string
functions, you can strip out certain parts of the time string as
needed for your application.

Sample Program

10 & TIME (T9)
20 PRINT "Today is: ";T$

] RUN
Today is: Mon, 8 Sep 86 03:04:05

Some clock systems do not support the day of week nor seconds
through ProDOS. On these systems, TIME returns a string with
the first four characters as spaces, and seconds are always “00”.
Today i s: 8 Sep 86 03:04: 05

If aclock isnot installed, using TIME returns astring with a
blank day of week and month, and everything elseis zero:

Today i s: 0 00 00: 00: 00

Thiscommand isavailable only if a Time module isloaded, such
as Timeor TimeGS.

UCASE

& UCASE (strvar)
Convertsastring variable' s lowercase | etters to uppercase.

Also See
LCASE

51

3: AMPERWORKS

UNTIL & UNTI L (bool exp)
& UNTIL marks the end of aREPT-UNTIL block. The statements
between the & REPT and & UNTIL markers repeat until the

Boolean expression within parenthesesistrue. When the
condition is met, program flow continues after the UNTIL
Statement.

Also See
REPT

VAL & VAL strexp TO nunvar

& Evaluates the numeric expression contained in strexp, returning
the result in numvar.

Sample Program

10 INPUT "Enter an expression: ";A$
20 & VAL A$ TO N
30 PRNT "The result is: ";N

] RN

Enter an expression: sin(log(3)*10) retum |
The result is: -.999955336

Also See
REPT

VLIN & VLI N nurmexpl, numexp2

& Drawsavertica line, the height determined by numexpl, with
the character whose ASCII code is determined by numexp2.

Both arguments must be numeric values from 0 to 255. Thisis
identical to & HLIN, except that the lineisdrawn verticaly.

Also See
HLIN

52

APPENDIX A

ASCII Chart

Low High Low High Low High Low High
0 $00 "@ 128 $80 | 32 $20 SPC 160 $A0 | 64 $40 @8 192 $CO | 96 $60 * 224 $EO
1901 MA 129 $81 | 33 $21 ! 161 $AL | 65 $41 A 3 193 $CL | 97 $61 a 225 $EI
2802 ~B 130 $82 | 34 $22 " 162 $A2 | 66 $42 B W 194 $C2 | 98 $62 b 226 $E2
3 803 AC 131 $83 | 35 $23 # 163 $A3 | 67 $43 C X 195 $C3 | 99 $63 ¢ 227 $E3
404 ~D 132 $84 | 36 $24 $ 164 $A4 | 68 $44 D v/ 196 $C4 | 100 $64 d 228 $E4
5 $05 AE 133 $85 | 37 $25 % 165 $A5 | 69 $45 E M4 197 $C5 | 101 $65 e 229 $ES
6 $06 "F 134 $86 | 38 $26 & 166 $A6 | 70 $46 F DAl 198 $C6 | 102 $66 f 230 $E6
7 807 AG 135 $87 | 39 $27 ' 167 $A7 | 71 $47 G = 199 $C7 | 103 $67 g 231 $E7
8 $08 "H 136 $88 | 40 $28 (168 $A8 | 72 $48 H € 200 $C8 | 104 $68 h 232 $ES
9 $09 Al 137 $89 | 41 $29) 169 $A9 | 73 $49 | .. 201 $C9 | 105 $69 i 233 $E9
10 $0A AJ 138 $8A | 42 $2A * 170 $AA | 74 $4A J <L 202 $CA | 106 $6A | 234 $EA
11 $0B ~K 139 $8B | 43 $2B + 171 $AB | 75 $4B K 1 203 $CB | 107 $6B k 235 $EB
12 $0C AL 140 $8C | 44 $2C , 172 $AC| 76 $4C L — 204 $CC | 108 $6C | 236 $EC
13 $0D "M 141 $8D | 45 $2D 173 $AD | 77 $4D M ¢ 205 $CD | 109 $6D m 237 $ED
14 $0E "N 142 $8E | 46 $26 . 174 $AE | 78 $4E N M 206 $CE | 110 $6E n 238 $EE
15 $0F ~O 143 $8F | 47 $2F | 175 $AF | 79 $4F O % 207 $CF | 111 $6F o 239 SEF
16 $10 "P 144 $90 | 48 $30 O 176 $BO | 80 $50 P 208 $D0 | 112 $70 p 240 $FO
17 $11 ~Q 145 $91 | 49 $31 1 177 $B1 | 81 $51 Q< 209 $DL | 113 $71 q 241 $F1
18 $12 "R 146 $92 | 50 $32 2 178 $B2 | 82 $52 R 4% 210 $D2 | 114 $72 r 242 $F2
19 $13 AS 147 $93 | 51 $33 3 179 $B3 | 83 $53 S — 211 $D3 | 115 $73 s 243 $F3
20 $14 AT 148 $94 | 52 $34 4 180 $B4 | 84 $54 T L 212 $D4 | 116 $74 t 244 $F4
21 $15 AU 149 $95 | 53 $35 5 181 $B5 | 85 $55 U-> 213 $D5 | 117 $75 u 245 $F5
22 $16 "V 150 $96 | 54 $36 6 182 $B6 | 86 $56 V & 214 $D6 | 118 $76 v 246 $F6
23 $17 AW 151 $97 | 55 $37 7 183 $B7 | 87 $57 WH¥E 215 $D7 | 119 $77 w 247 $F7
24 $18 ~X 152 $98 | 56 $38 8 184 $B8 | 88 $58 X = 216 $D8 | 120 $78 x 248 $F8
25 $19 Y 153 $99 | 57 $39 9 185 $B9 | 89 $59 Y =y 217 $D9 | 121 $79 'y 249 $F9
26 $1A ~Z 154 $9A | 58 $3A : 186 $BA | 90 $5A Z | 218 $DA | 122 $7TA z 250 $FA
27 $1B A 155 $9B | 59 $3B ; 187 $BB | 91 $5B [@ 219 $DB | 123 $7B { 251 $FB
28 $1C M 156 $9C | 60 $3C < 188 $BC | 92 $5C \ — 220 $DC | 124 $7C | 252 $FC
29 $1D A 157 $9D | 61 $3D = 189 $BD | 93 $5D] 4k 221 $DD | 125 $7D } 253 $FD
30 $1E A 158 $OE | 62 $3E > 190 $BE | 94 $5E " 3] 222 $DE | 126 $7E ~ 254 $FE
31 $1F ~_ 159 $OF | 63 $3F 2 191 $BF | 95 $5F _ | 223 $DF | 127 $7F DEL 255 $FF

Low

High Low

High Low

High Low

High

53

54

APPENDIX B

ProDQOS File Types

Type Hex Dec Description

UNK $00 0 Unknown

BAD $01 1 Bad Blocks

PCD $02 2 Apple /// Pascal Code
PTX $03 3 Apple /Il Pascal Text

TXT $04 4 ASCII Text

PDA $05 5 Apple /Il Pascal Data

BIN $06 6 General Binary

FNT $07 7 Apple /Il Font

FOT $08 8 Graphics

BA3 $09 9 Apple // BASIC Program
DA3 $0A 10 Apple /I BASIC Data
WPF $0B 11 Word Processor

SOS $0C 12 Apple /Il SOS System

DIR $OF 15 Folder

RPD $10 16 Apple //l RPS Data

RPI $11 17 Apple /Il RPS Index

AFD $12 18 Apple /// AppleFile Discard
AFM $13 19 Apple /Il AppleFile Model
AFR $14 20 Apple /Il AppleFile Report Format
SCL $15 21 Apple /Il Screen Library
PFS $16 22 PFS Document

ADB $19 25 AppleWorks Data Base
AWP $1A 26 AppleWorks Word Processor
ASP $1B 27 AppleWorks Spread Sheet
TDM $20 32 Desktop Manager Document
8SC $29 42 Apple Il Source Code
80B $2A 43 Apple Il Object Code

8IC $2B 44 Apple Il Interpreted Code
8LD $2C 45 Apple Il Language Data
P8C $2D 46 ProDOS 8 Code Module
FTD $42 66 File Type Names

GWP $50 80 Apple IIGS Word Processor
GSS $51 81 Apple IIGS Spread Sheet
GDB $52 82 Apple IIGS Data Base
DRW $53 83 Drawing

GDP $54 84 Desktop Publishing

HMD $55 85 Hypermedia

EDU $56 86 Educational Data

STN $57 87 Stationery

HLP $58 88 Help

COM $59 89 Communications

CFG $5A 90 Configuration

ANM $5B 91 Animation

MUM $5C 92 Multimedia

ENT $5D 93 Entertainment

DVU $5E 94 Development Utility
Continued . . .

55

B: PRODOS FILE TYPES

ProDOS File Types (Continued)

Type Hex Dec Description

BIO $6B 107 PC Transporter BIOS

TDR $6D 109 PC Transporter Driver
PRE $6E 110 PC Transporter Pre-Boot
HDV $6F 111 PC Transporter Volume
WP $A0 160 WordPerfect Document
GSB $AB 171 Apple 1IGS BASIC Program
TDF $AC 172 Apple IIGS BASIC TDF
BDF $AD 173 Apple IIGS BASIC Data
SRC $BO 176 Apple IIGS Source

OBJ $B1 177 Apple 1IGS Object

LIB $B2 178 Apple IIGS Library

S16 $B3 179 GS/OS Application

RTL $B4 180 GS/OS Run-time Library
EXE $B5 181 GS/OS Shell Application
PIF $B6 182 Permanent Initialization
TIF $B7 183 Temporary Initialization
NDA $B8 184 New Desk Accessory

CDA $B9 185 Classic Desk Accessory
TOL $BA 186 Tool

DRV $BB 187 Device Driver

LDF $BC 188 Load File

FST $BD 189 GS/OS File System Translater
DOC $BF 191 GS/OS Document

PNT $CO 192 Packed Super Hi-Res Picture
PIC $C1 193 Super Hi-Res Picture

ANI $C2 194 Animation

PAL $C3 195 Palette

00G $C5 197 Object Oriented Graphics
SCR $C6 198 Script

CDV $C7 199 Control Panel

FON $C8 200 Font

FND $C9 201 Finder Data

ICN $CA 202 Icons

MUS $D5 213 Music Sequence

INS $D6 214 Instrument

MDI $D7 215 MIDI

SND $D8 216 Sampled Sound

DBM $DB 219 Relational Data Base File
LBR $EO0 224 Archival Library

ATK $E2 226 AppleTalk Data

R16 $EE 238 EDASM 816 Relocatable File
PAS $EF 239 Pascal Area

CMD $FO 240 BASIC Command

LNK $F8 248 EDASM Linker

oS $F9 249 GS/OS System File

INT $FA 250 Integer BASIC Program
IVR $FB 251 Integer BASIC Variables
BAS $FC 252 Applesoft BASIC Program
VAR $FD 253 Applesoft BASIC Variables
REL $FE 254 Relocatable Code

SYS $FF 255 ProDOS 8 System Application

56

APPENDIX CAPPENDIX B

O©ooO~NOOTA~ WNO

Error Codes

NEXT Without FOR: aNEXT was encountered which had no matching FOR.
Range Error: an invalid argument val ue was specified.

No Device Connected: the given sot hasno disk drive installed.

Write Protected Disk: unable save data unless write-enabled.

End of Data: an attempt was made to read data past the end of afile.

Path Not Found: the path to afilename was not found.

File Not Found: the specified file was not found.

I/0 Error: the drive went offline or the disk has a media defect.

Disk Full: no room exists on the disk storing more data.

File Locked: thefileis protected against modification or removal.

Invalid Option: an option not allowed for a certain command was used.

No Buffers Available: not enough memory for further disk functions.

File Type Mismatch: an invalid attempt was made to access a specidl file.
Program Too Large: you've written aFAT and SLOPPY program.

Not Direct Command: command was issued from immediate mode.
Syntax Error: afilenameisillegal or aprogram statement misspelled.
Directory Full: the root volume contains too many filenames.

File Not Open: an atempt was made to read or write from an closed file.
Duplicate File Name: aRENAME or CREATE used on an existing filename.
File Busy: an attempt to re-OPEN or modify an OPEN file's name was made.
File Still Open: upon entering immediate mode, afile was found OPEN.
RETURN Without GOSUB: aRETURN with no matching GOSUB.

Out of Data: an attempt was made to READ past the last DATA item.
lllegal Quantity: an out-of-range value was used with a certain command.
Overflow: you used an awfully BIG or amazingly SMALL number.

Out of Memory: program code and variables have used up all free memory.
Undef'd Statement: aline number which does not exist was referenced.
Bad Subscript: an array subscript is larger than the given DIMension.
Redim'd Array: an attempt was made to reDIMension an existing array.
Division by Zero: division by zero is undefined (remember your algebra?)
Type Mismatch: anumeric or string value was used incorrectly.

String Too Long: the given string was larger than was allowed.

Formula Too Complex: go easy on the machine, Einstein.

Undef'd Function: reference to an undefined FuNction was made.
Reenter: user input was not of the type or format required.

Control-C Interrupt: * contol -C was pressed.

57

58

APPENDIX D

Licensing

As stated on the inside cover of this manual, thisis a copyrighted
software product. It may not be distributed in any way without
permission of the Morgan Davis Group. To obtain authorization
to include Morgan Davis Group software with your commercial
products, write or call and request aUniversal Software Licens-
ing Agreement. Be sure to include the title of the Morgan Davis
Group software you wish to license:

http://www.morgandavis.net

59

60

APPENDIX E

BASIC Syntax

Throughout this manual some abbreviations are used to
clarify special syntaxes or conditions for command usage.
This appendix quickly explains what they mean and how
they’re used.

strexp A gtring is defined as a group of |etters, numbers, symboals, or
control codes. A string expression, or strexp as used in this
manual, is any combination of strings and their variousformsin
BASIC. Examples of string expressions:
X$
"Hello, VWorld."
“this" + "that"
CHR$(4) + "CPEN' + FILES$
CHRP(ASO M DB(@®, I, 1)) - 2) + "yuck!"

strvar With some ampersand commands that return string information,
adtring variable, strvar, isrequired. When adtrvar iscaled for,
astring expression isnot allowed. Examples of string variables:
X$
NAVES(7)

boolexp A Boolean expression, boolexp, isany logical operation that

resultsinaTRUE or FALSE numeric value. Thisincludes
numeric or string operations used conditionally. InBASIC, a
TRUE valueis anything other than zero (usually one), while
FALSE isalways zero. Some examples:

A B$
A" <"B'" R"B' <"C'
((1 -J) ORQ ANDC< (D+ 33 * (NOT X))

A

61

BASIC SYNTAX

numexp A numeric expression, numexp, is any combination of numbers,
numeric variables, or arithmetic functionsthat result in a
numeric value. Examples:
X
2 +2
ASOOM D$(B$, 5, 1)) + 64 * (C/ 2)
Pl - INT(LOEX) / SINY) * Y * 20))
numvar A numeric variable, numvar, is used when acommand returns a
numeric value. Examples:
X
Q%
J(3 +1)
O pti onal Some commands accept optional parameters, shown within [|
Arg uments bracketsin thismanual. Do not include the brackets when you

62

enter the commandsinto BASIC.

INDEX

Index

A

absolutereference 29
amper sand
commandtable 16, 17
AmperWorks 31
command summary 32
loading 31
APW 28
ASCII chart 53
assembly language 7, 15, 29

H

header
filds 16
verson 16, 18, 29

B
boolexp 61

E

error codes 57

ID number 9, 12
IMC 19

updating pointers 29
immediate modetable 17, 18
immediatereference 17, 18
index number 9, 12
intermodule communication. See

IMC

interfacefiles 28

F

filetype 11, 55

function
OMM_C2PSTR 23, 27
OMM_COUNT 23, 27
OMM_FREE 23, 25
OMM_GETID 23, 24, 27
OMM_GETINFO 23, 28
OMM_GETSTR 23, 27
OMM_PADDEC 23, 27
OMM_PUTSTR 23, 26
OMM_PUTWORD 23, 26
OMM_XOAMP 23, 25

L

licensng 59

63

INDEX

M

memory 7

auxiliary memory 7
internal buffers 28
removing modules 12

Merlin 28
message

MSG AMPR 20

MSG BORN 20, 22, 27
MSG DIED 20, 22, 27
MSG IDLE 20, 23
MSG INFO 20, 23
MSG INIT 20

MSG KILL 20, 22
MSG QUIT 20

MSG REL1 20, 21, 29
MSG REL2 20, 21, 29
MSG USER 20, 21

messages 19, 20
module

address 9
buildinga 15
datasection 18
formatofa 15

header 16

IMC handler 19
information 8, 12, 13
length 9

loading 8

memory usage 7
removing 12

64

N

numexp 62
numvar 62

O

OMM
coderelocator 17, 18, 29
Commands
LOAD CALL 14
LOAD FRE 10, 12
LOAD GET 10, 11
LOAD NOTRACE 10, 13
LOAD PEEK 10, 13
LOAD PRINT 10, 12
LOAD TRACE 10, 13
features 15
OMM.Loader 8
opcodeusage 29
BRK 29
immediate modereference 29
ORCA/M 28

strexp 61
srvar 61

\%

verson numbers 9

NOTES

65

NOTES

66

67

BASIC Memory Management Solution

How did we take the headache
out of enhancing BASIC?

We used our brans!

If you've ever tried to improve Applesoft BASIC, the OMM is
for you! The OMM diminates memory conflicts and gives
you added power! Use your favorite assembler to easly

createreocatable modules. Let the OMM do thebranwork!

» Accellerates Applesoft » Includes AmperWorks™
» Intermodule Communication » Sample programs

» Efficiently manages memory » Supports al assemblers

M Morgan Davis Group

www.morgandavis.net

