
OM M
The Object Module Manager

 Morgan Davis Group

Includes AmperWorks

2

Copyright © 1992 MORGAN DAVIS GROUP. ALL RIGHTS RESERVED.

ht t p: / / www. mor gandavi s. net

NO PART OF THIS PUBLICATION MAY BE REPRODUCED, STORED IN A
RETRIEVAL SYSTEM, OR TRANSMITTED, IN ANY FORM OR BY ANY

MEANS, ELECTRONIC, MECHANICAL, PHOTOCOPYING, RECORDING OR

OTHERWISE, WITHOUT THE PRIOR WRITTEN PERMISSION OF THE

AUTHOR. NO PATENT LIABILITY IS ASSUMED WITH RESPECT TO THE

USE OF THE INFORMATION CONTAINED HEREIN. WHILE EVERY

PRECAUTION HAS BEEN TAKEN IN THE PREPARATION OF THIS

PRODUCT, THE AUTHOR ASSUMES NO RESPONSIBILITY FOR ERRORS OR

OMISSIONS.

THE PRODUCT NAMES MENTIONED IN THIS MANUAL ARE THE

TRADEMARKS OR REGISTERED TRADEMARKS OF THEIR MANUFACTUR-
ERS.

PRODOS AND PRODOS BASIC ARE COPYRIGHTED PROGRAMS OF

APPLE COMPUTER, INC. LICENSED TO THE MORGAN DAVIS GROUP

TO DISTRIBUTE FOR USE ONLY IN COMBINATION WITH THIS PRODUCT.
APPLE SOFTWARE SHALL NOT BE COPIED ONTO ANOTHER DISKETTE

(EXCEPT FOR ARCHIVE PURPOSES) OR INTO MEMORY UNLESS AS PART

OF EXECUTION OF THIS PRODUCT. WHEN THIS PRODUCT HAS

COMPLETED EXECUTION, APPLE SOFTWARE SHALL NOT BE USED BY

ANY OTHER PROGRAM.

APPLE COMPUTER, INC. MAKES NO WARRANTIES, EITHER EXPRESS OR

IMPLIED REGARDING THE ENCLOSED SOFTWARE PACKAGE, ITS

MERCHANTABILITY OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
THE EXCLUSION OF IMPLIED WARRANTIES IS NOT PERMITTED IN SOME

STATES. THE ABOVE EXCLUSION MAY NOT APPLY TO YOU. THIS

WARRANTY PROVIDES YOU WITH SPECIFIC LEGAL RIGHTS. THERE

MAY BE OTHER RIGHTS THAT YOU MAY HAVE THAT VARY FROM

STATE TO STATE.

FIRST PRINTING — FEBRUARY 1992 — U.S.A.

The Power Loom

From the 1851
Edition of The
Iconographic

Encyclopedia of
Science, Literature

and Art

Printed on 20% post-
consumer recycled paper.

3

Contents
Introduction .. 5
Credits .. 6

Chapter One: Using the OMM .. 7
What You Should Know .. 7
Memory Usage .. 7
Loading the OMM... 8
Module Entries ... 8
OMM Commands ... 10
LOAD GET... 11
LOAD PRINT .. 12
LOAD FRE ... 12
LOAD PEEK ... 13
LOAD TRACE/NOTRACE ... 13
LOAD CALL .. 14
Sample Programs .. 14

Chapter Two: Building A Module 15
OMM Features ... 15
Module Format .. 15
Header ... 16
Code Section .. 17
Immediate Mode Table ... 18
Data Section.. 18
IMC ... 19
Messages ... 20
Utility Functions .. 23
Interfaces & Sources ... 28
Buffer Space .. 28
Absolute References .. 29
Opcode Usage ... 29

Chapter Three: AmperWorks ... 31
Introduction ... 31
Command Summary .. 32
/ (Get Info) ... 33
\ (Set Info) .. 34
< (Parent Directory) .. 35

4

ADD .. 35
ASC ... 36
COPY .. 36
ERASE .. 36
FILES .. 37
GET .. 38
HLIN ... 38
LCASE ... 39
LIST .. 39
LEFT$... 40
MID$... 40
MLI .. 41
ONERR .. 42
POKE ... 42
POP ... 43
POS ... 43
PRINT ... 44
READ ... 44
REPT .. 45
RESTORE.. 46
RESTORE GOTO .. 46
RIGHT$.. 47
SPC ... 48
SRT (Sort) ... 48
STORE .. 49
STORE CLEAR ... 50
SWAP .. 50
TFILES ... 50
TIME ... 51
UCASE... 51
UNTIL ... 52
VAL ... 52
VLIN... 52

Appendix A: ASCII Chart ... 53
Appendix B: ProDOS File Types ... 55
Appendix C: Error Codes... 57
Appendix D: Licensing... 59
Appendix E: BASIC Syntax .. 61

Index ... 63

5

Introduction

What is the Object Module Manager (OMM)?

For the avid BASIC programmer, the OMM allows you to make
use of multiple machine language programs (e.g. utilities,
editors, debuggers, graphics tools, modem and printer drivers,
etc.) without the usual hassle of where to load them into
memory. Without the impending disaster normally accompanied
with putting two or more incompatible utilities into memory at
once.

Throughout this manual the following symbols are used to
denote keys on your keyboard:

reset Reset
option Option or solid-apple

command Command or open-apple
control Control
esc Escape
return Return
delete Delete

Up arrow or control -K
Down arrow or control -J
Left arrow or control -H
Right arrow or control -U

tab Tab or control -I
shift Shift

Hyphenated key references, such as command - esc , tell you to press
and hold the first key while typing the second.

6

Credits The OMM would not be in your hands now if it were not for the
encouragement and support I have received over the years. My
foremost gratitude goes to the many customers and friends who
have made it possible for me to create Apple II software. I
cannot express enough appreciation for Tim Swihart, humble
servant of Apple Computer, who is always there to assist.
Finally, I am forever grateful for the love and tireless patience
from my wife, Dawn, and children, Kristi and Ryan. To you all,
I express my most sincere thanks.

—Morgan Davis

7

Using the OMM
This chapter shows you how to get started with the Object
Module Manager (OMM). You’ ll learn how to load it into
memory and work with it using Applesoft BASIC.

What You
Should
Know

The OMM is a utility for Applesoft BASIC. It efficiently
manages machine language programs that enhance the BASIC
environment. A BASIC program can load machine language
programs (object modules) from disk into memory, and unload
them when no longer needed. It allows modules to send
messages to each other using intermodule communication
(IMC). With the OMM, programmers can easily create highly
integrated applications for use in the BASIC environment.

Since the OMM is a BASIC programmer’s utility, a working
knowledge of Applesoft and ProDOS BASIC (BASIC.System)
is essential.

If you plan to create your own modules for use with the OMM,
you’ ll need to know assembly language for the 6502-series
microprocessors. You’ ll also need an assembler.

Memory
Usage

The OMM resides in the main 48K memory bank. It does not
use any auxiliary memory or space used by a RAM disk. To
make the most efficient use of memory, the OMM moves itself
as high as possible into free memory, giving optimum space to
BASIC programs and modules.

As modules are loaded, the OMM places them just below itself
and any previously loaded modules, building downward into
memory. The OMM protects modules from being overwritten
by file commands, such as BLOAD.

CHAPTER ONE

8

If a module is removed, any modules residing below it are
moved up to recover unoccupied memory.

Loading the
OMM

Since the OMM is used by many software packages, getting it
into memory may depend on the program you are using. Simply
booting the program’s diskette may do the job.

If you plan to use the OMM with your own projects, here is how
to get it into memory. From the Applesoft prompt (immediate
mode) type:

] - OMM. Loader return

From a running program (deferred mode) use:

10 PRI NT CHR$(4) " - OMM. Loader "

In each case, you may need to supply the full pathname to the
OMM.Loader file if it is in a directory other than the current
directory.

NOTE: If a copy of the OMM.Loader is already in memory, a
DUPLICATE FILE ERROR occurs.

Module
Entries

Once the OMM.Loader is activated, a line of information about
the OMM is displayed:

0 I =$0000 L=$0800 A=$9200 14- Nov- 91 OMM 1. 3

Title and version
Date

Address in memory
Length in bytes

ID number
Index number

1: USING THE OMM

9

About Version Numbers

Version numbers are useful for indicating the various stages of enhancements
and corrections to computer programs. Here is a guide for interpreting them:

7. 0. 1 d3

Version number Pre-release stage

The first digit in the version indicates the major release number (e.g., 7, as
shown above). This would mean the 7th release of the program in which major
changes were made.

The second digit is the minor release number (e.g., 0, in the example). In this
case, there were no changes to warrant increasing the minor release digit since
the 7.0 version. When enough minor changes occur, the major release digit
increases.

Continued . . .

Index Number . Each module, including the OMM itself, can be
referenced by its index. Indexes start at 0 (the OMM) and
increase by one for each subsequently loaded module.

ID Number (I). Each module (and the OMM) is identified by a
unique ID number. Modules can be referenced by index or by
ID when working with the OMM.

Length (L). Indicates the size of the module and the amount of
memory a module uses.

Address (A). Indicates the address in memory where the
module resides.

Date. Version date of the module. The programmer who
created it will update the date each time the module is changed.

Title and Version. The name of the module and its version
number.

1: USING THE OMM

10

About Version Numbers (continued) . . .

The third digit is the maintenance level (e.g., 1, in the example). This indicates
very minor corrections made to the program. When enough maintenance fixes
occur, the minor release number increases.

If the program version is not for public release, it includes a pre-release stage
version. This begins with a code letter:

d in-house development version (not yet released)
a alpha release (for a small group of testers)
b beta release (for a larger group of testers)

Following the letter is a pre-release stage number. In the example on the
previous page, 7.0.1d3 indicates that the program is the 3rd developmental
version for the 7.0.1 release. It will go through alpha (e.g., 7.0.1a8) and beta
(e.g., 7.0.1b12) stages. After all the testing is complete, it will drop the pre-
release numbers to become the final 7.0.1 version, or the first maintenance
release of the 7th major version of the program.

OMM
Commands

The OMM provides the programmer with the following com-
mands, accessed through the ampersand (&) feature of Applesoft
BASIC:

& LOAD GET Gets modules from disk into memory.
& LOAD PRI NT Prints a table of the loaded modules.
& LOAD FRE Removes modules from memory.
& LOAD NOTRACE Turns off reporting of loading and

unloading activity.
& LOAD TRACE Turns on reporting of module loading and

unloading.
& LOAD PEEK Peeks at various Loader information.
& LOAD CALL Calls a module, passing various param-

eters.

These commands are described next. Refer to Appendix E,
“BASIC Syntax” for a description of the various types of
parameters that can be used by ampersand commands.

1: USING THE OMM

11

LOAD GET & LOAD GET st r exp [, numvar] [AND . . .]

To bring modules from disk into memory, use the LOAD
GET command. strexp is a string expression containing the
pathname to a module. Modules have a file type of REL
($FE) on disk. Should an error occur (such as the module not
being found), the appropriate error is generated through
BASIC. You can trap for any disk errors using standard
Applesoft ONERR handling.

To load modules without error reporting, use the optional
numeric variable, numvar, method:

& LOAD GET " modul e" , N

This tells the OMM to return disk errors in the result variable, N.
If no error occurs, zero is returned. Any non-zero result is an
error as described in Appendix D, “Error Codes.” It is up to you
to handle errors when using this method.

A program can make as many LOAD GET calls as needed to
load the modules, but it may also specify a list of modules in one
LOAD GET call by using the AND keyword. Example:

& LOAD GET " modul e1" AND " modul e2" AND " modul e3"

This is also valid:

& LOAD GET " modul e1" , R1 AND " modul e2" , R2

Up to 24 modules can be loaded into memory at any one time.

NOTE: If an attempt is made to load a module with an ID of a
previously loaded module, a DUPLICATE FILE NAME error
occurs (or a result variable contains 19).

This command must be used from deferred mode (while in a
running program). Attempting to use it from immediate mode
returns an ?ILLEGAL DIRECT ERROR.

1: USING THE OMM

12

To display a table of loaded modules, use:

& LOAD PRI NT

A typical table might look like this:

0 I =$0000 L=$0800 A=$9200 14- Nov- 91 OMM 1. 3
1 I =$7761 L=$0D00 A=$8500 17- Oct - 91 Amper Wor ks 3. 0
2 I =$776D L=$0A00 A=$7B00 13- Nov- 91 ModemWor ks 3. 0
3 I =$7474 L=$0300 A=$7800 12- Nov- 91 Ti meGS 1. 0
4 I =$7463 L=$0500 A=$7300 13- Nov- 91 Consol e 1. 0
5 I =$6D74 L=$0200 A=$7100 13- Nov- 91 Ter mi nal 1. 0
6 I =$735D L=$0300 A=$6E00 12- Nov- 91 St or e256 1. 0
7 I =$7470 L=$0500 A=$6900 12- Nov- 91 Ser i al GS 1. 0
8 I =$746D L=$0500 A=$6400 13- Nov- 91 I nt el 9600EX 1. 0

You can select the numeric format used by including a 0 or 1
argument:

& LOAD PRI NT 0 : REM 0 sel ect s DECI MAL f or mat
& LOAD PRI NT 1 : REM 1 sel ect s HEX f or mat (def aul t)

When an argument is given, nothing is printed—the formatting
mode is set for subsequent &LOAD PRINT displays.

LOAD PRINT

LOAD FRE To remove a module from memory, use LOAD FRE:

& LOAD FRE numexp

where numexp is the ID of the module. The ID can also be the
index number. For example, the AmperWorks module shown in
the table above could be freed using either of these commands:

& LOAD FRE 1
& LOAD FRE 30561

The index number is 1, and the ID number for AmperWorks is
30561 ($7761). The ID of a module will always be greater than
255, so anything less than 256 is considered the index of a loaded
module.

1: USING THE OMM

13

To remove everything—the OMM and any modules—use:

& LOAD FRE

When the ID argument is omitted, an ID of zero is assumed.
This shuts down the OMM and all modules loaded. Index 0
references the Loader itself, and when the Loader goes, every-
thing goes.

LOAD PEEK LOAD PEEK obtains OMM information about loaded modules.
It requires a number to specify the type of information desired.
Additional arguments may be needed depending on the type of
information requested. Examples:

& LOAD PEEK 0, N

LOAD PEEK 0 returns a count of loaded modules into the
numeric variable which follows.

& LOAD PEEK 1, I D, A$

LOAD PEEK 1 returns a module’s information entry. The
module is identified by ID (or index), and the entry is returned in
a string variable. If an invalid ID or index is specified, an empty
string is returned. The numbers are in hexadecimal, unless the
&LOAD PRINT 0 command is used first.

LOAD
TRACE/
NOTRACE

Each time a module is loaded with LOAD GET, or removed with
LOAD FRE, the OMM displays the module’s information entry.

To show a module’s entry when loaded or removed, use:

& LOAD TRACE

To keep the OMM “silent” when modules are loaded or
removed, use:

& LOAD NOTRACE

1: USING THE OMM

14

LOAD CALL This is an advanced OMM command, typically used when
testing a module in development. Use LOAD CALL to pass a
message and a function number to a module from within BASIC.
(Messages and functions are discussed in Chapter Two, “Build-
ing A Module”). Example:

& LOAD CALL I D, message, f unct i on [, . . .]

This command requires at least three arguments: the ID (or
index) of the module, a message code number, and a function
number. If the intended function requires any extra parameters
they can be included as needed.

Sample
Programs

The sample program below illustrates the process of working
with a module once the OMM is active. It uses the HexDec
module to perform hex-to-decimal and decimal-to-hex number
conversions. When done, it removes the HexDec module.

100 & LOAD GET " / OMM/ Modul es/ HexDec"
110 PRI NT : PRI NT " HexDec modul e l oaded"
120 PRI NT : I NPUT " Ent er a deci mal number : " ; D
130 & HEX(D) , H$
140 PRI NT " The hex equi val ent of " ; D; " i s $" ; H$
150 PRI NT : I NPUT " Ent er a hex number : $" ; H$
160 & DEC(H$) , D
170 PRI NT " The deci mal equi val ent of $" ; H$; " i s " ; D
180 PRI NT
190 & LOAD PEEK 0, LAST
200 & LOAD FRE LAST
210 PRI NT : PRI NT " HexDec modul e r el eased"

Additional sample programs can be found on the OMM diskette.

1: USING THE OMM

15

CHAPTER TWO

Building A Module
This chapter is for assembly language programmers interested in
creating their own modules for use with the OMM. The OMM
is perfect for the Applesoft programmer with machine language
routines in excess of 200 bytes. Entire integrated systems can be
built based on the OMM.

OMM
Features

Cooperating with ProDOS 8 and ProDOS BASIC, the OMM
offers these services:

Manages machine language routines (code modules)
Allows code modules to peacefully coexist in memory
Makes efficient use of memory
Protects program modules from being overwritten
Quickly relocates modules from disk into memory
Allows for loading and unloading of modules as needed
Provides intermodule communication (IMC) technology
Includes utility routines useful to most modules
Supports built-in ampersand command parsing
Dynamically relocates modules to reclaim unused memory
Compatible with ProDOS, BASIC.System, and Applesoft

The OMM does some neat things that, until now, could not be
integrated into the operating system under ProDOS BASIC. The
ability to parse ampersand commands makes it easy to add
machine language routines to Applesoft. And, since modules
can communicate with one another, the possibilities are endless
for a highly integrated environment.

Module
Format

A module follows a specific internal format, composed of four
major parts:

Header
Code section
Immediate mode reference table
Data section

16

A condensed layout of a typical module would follow this source
code outline:

HEADER equ * ; 16- byt e (ver si on 0) header
:

START equ * ; st ar t of modul e code
:
db $00 ; code ends wi t h a $00 byt e

I MMED equ * ; i mmedi at e mode t abl e st ar t s
:
dw $0000 ; ends wi t h t wo $00 byt es

DATA equ * ; dat a sect i on st ar t s
:

END equ * ; end of modul e

(For example purposes, db is an assembler pseudo-opcode that
defines one byte. The dw pseudo-opcode defines one word —
two bytes or 16-bits.)

Header The header consists of eight fields. Each field is 16-bits in size:

HEADER equ * ; st ar t of header
hVERS dw $0000 ; Loader header ver si on
hI D dw $7475 ; 16- bi t uni que I D number
hSI ZE dw END- START ; si ze of t he modul e
hORG dw START ; or i gi n at st ar t of modul e
hAMPC dw AMPERCT ; amper sand command t abl e
hKI ND dw $0000 ; modul e ki nd
hRSRV1 dw $0000 ; r eser ved f or f ut ur e use
hRSRV2 dw $0000 ; r eser ved f or f ut ur e use

hVERS. Normally $0000. If your module uses inline, two-byte
BRK instructions, use a version of $0001.

hID. A unique 16-bit ID number that identifies the module.

hSIZE. The size of the module (not including the header). This
is easily computed at assembly time by using labels at the
beginning (START) and end (END) of your program to calculate
the difference.

2: BUILDING A MODULE

17

hORG. The value of the program counter at the START of the
module. This value must always be page aligned. This means
that the code at START must begin on a page boundary ($1000,
$1100, $4600, etc., where the low-byte of the address is zero).
To do this with most assemblers, set the ORG to a value like
$0FF0 before the header. The module’s header, being 16 bytes,
places the code at the START of the program at $1000.

hAMPC. The address of an optional table of data and tokens for
processing ampersand commands. If no ampersand parsing is to
be done for the module, set this field to $0000. If a table address
is given, the table itself is located in the data section of the
program and must follow this format:

AMPERCT asc ' TYPE'
db $00
asc ' SPOOL'
db $00
db $FF

(asc is a pseudo-opcode that inserts a stream of characters).

Each command name (i.e., “TYPE” or “SPOOL”) is stored as
ASCII text (MSB off), and is terminated by a $00 byte.
Applesoft tokens can be used in addition to ASCII text strings.
The table itself is terminated by one $FF byte.

hKIND. Use $0000 — the OMM currently supports a single
format.

hRSRV1 and hRSRV2. Reserved for future use. They both
should be $0000.

2: BUILDING A MODULE

Code
Section

The code in the START segment of the module cannot contain
any data storage. Only valid opcodes and their operands can be
present. In addition, you cannot make immediate references to
labels within the program, as they cannot be resolved correctly
by the OMM’s code relocator. The end of this section is
terminated by a $00 byte (or BRK). This informs the relocator
that the immediate mode table begins.

18

NOTE: If your module has a version 1 header (hVERS is
$0001), the code section ends with three (3) zero bytes.

2: BUILDING A MODULE

Immediate
Mode
Table

The IMMED table consists of two-byte addresses that reference
locations within the module (between START and END). The
table ends with two $00 bytes. This allows code to access labels
within the module using absolute references.

CAUTION: An immediate reference to a label within a
module is not allowed:

l da #<LABEL ; t hi s i s NOT al l owed!
l dy #>LABEL ; ERROR! ERROR!
:

LABEL equ *

The OMM code relocator cannot resolve internal immediate
references. To the relocator, it appears that the code is simply
loading the A and Y registers with two constant values—
whatever the assembler assigned to them. Since LABEL can be
located anywhere in memory at runtime, the value stored in Y
will be invalid. To overcome this, the address of LABEL can be
stored in the IMMED table:

I MMED equ *
a_LABEL dw LABEL

The code can now load A and Y with the runtime address of
LABEL using absolute references to the two bytes at a_LABEL:

l da a_LABEL
l dy a_LABEL+1

Data
Section

The DATA section can contain anything. The relocator does not
touch it. Code is stored in the DATA section may not run
properly if it makes references within the module. Code can be
stored here as long as it makes no references to itself (other than
conditional branches), or makes references to locations outside
the module (e.g., ProDOS, Applesoft, monitor ROM, etc.).

19

IMC The OMM features a technology called intermodule communi-
cation (IMC). IMC allows modules to send messages to each
other to exchange information or to initiate special tasks. The
OMM itself makes use of this in order to instruct the module to
perform certain OMM-related tasks, such as initializing itself
after it has been loaded into memory.

This assumes, of course, that the module begins with code to
process commands and messages from the OMM (or other
modules). At the START of a typical module, the following
code is included to operate correctly in the OMM environment:

START cmp #MSG_AMPR ; amper sand command?
beq doampr ; yes

cmp #MSG_I NFO ; get I NFO st r i ng?
beq doi nf o ; yes

cmp #MSG_I NI T ; I NI T r equest ?
beq doi ni t ; yes

cmp #MSG_QUI T ; QUI T r equest ?
beq doqui t ; yes

r t s

(The values for the MSG constants are kept in an
interface file that the source brings into the assembly
before this point. They’re discussed in the next
section).

The OMM calls a module with a command code in the
accumulator (A-register), and it is up to the module to

service the command based on the message being
sent. While there are many different

kinds of messages that a module may
elect to service, all modules must be
able to service the INFO message.

2: BUILDING A MODULE

20

2: BUILDING A MODULE

Messages The messages that the OMM may send are:

MSG_INIT Initialize module
MSG_QUIT Quit (shutdown) module
MSG_AMPR Execute ampersand service routine
MSG_USER Intermodule service request
MSG_REL1 Alert module that it is about to be relocated
MSG_REL2 Alert module after it has been relocated
MSG_KILL Notification that a module is to be killed
MSG_DIED Notification that a module just died
MSG_BORN Notification that a module has just been born
MSG_IDLE Idle event for module (not implemented yet)
MSG_INFO Asks module to return an information string

MSG_INIT ($00)

A module receives the MSG_INIT message from the OMM as
soon as it is established into memory. The module can use this
opportunity to set itself up before handling other messages. This
is the second message that the module will get, the first being the
MSG_INFO message.

MSG_QUIT ($01)

This is the last message a module gets before it is removed from
the system. The module should close any open files, and disable
interrupt sources it turned on. In essence, it must clean house
and put all the toys away. In doing this, it may instruct other
modules to prepare for its demise by passing information to
them.

MSG_AMPR ($02)

If an ampersand command is encountered in Applesoft, control
passes to the OMM where it attempts to locate the command in
tables in each module. When found, the OMM sends the
MSG_AMPR message to the corresponding module.

The Y-register contains a number that denotes the index of the
ampersand command in the table. If Y is zero, the first com-
mand in the table was issued. If Y were five, then the sixth

21

command in the table had been encountered. In this manner, Y
can be used as an index into a table of addresses for ampersand
service routines.

MSG_USER ($03)

When another module wants to communicate via IMC, it
performs the following steps:

l dx modul eI ndex ; X = i ndex t o t he modul e
l dy #A_FUNCTI ON ; Y = a user - def i ned f unct i on
j sr OMMVEC ; cal l t he OMM

The X-register holds the index of the module to receive the
message. (Obtaining an index to a module is discussed later).
The Y-register holds a value that is passed to the module. This
value is known by both the calling module and the receiving
module. The receiving module’s START code would detect the
MSG_USER code in the A-register, pass control to its handler,
which services the function based on the number in the Y-
register.

MSG_REL1 ($04)

When a module is purged, any modules that are to be relocated
to fill in the gap are sent the REL1 message. This message is
sent before the relocation begins. The module can take the
opportunity to do whatever is necessary to allow the OMM to
relocate the module properly. It may also use this time to inform
other modules that it is about to move, in case the other modules
may expect the to-be-relocated module to stay in place due to
absolute references. The module may also wish to remove any
interrupt vectors allocated to it at this time.

MSG_REL2 ($05)

After a module is relocated it receives the REL2 message. The
module can basically reverse the steps taken for the MSG_REL1
event in order to return to its normal state.

2: BUILDING A MODULE

22

MSG_KILL ($06)

This message is sent to all loaded modules just prior to a module
being freed, including the to-be-killed module. This allows all
the modules to cooperate in whatever measures are necessary to
prepare for the loss of a module which is still alive at this point.

Upon entry, the Y register will contain the index to the module
being freed.

MSG_DIED ($07)

After a module is removed, this message is sent to all loaded
modules. If a module used IMC with the dead module, it will
know that is no longer in the system, and no further IMC calls
can be made to it.

Upon entry, the Y register will contain the index to the module
that was freed.

Each module using IMC should call the OMM to get new
indexes for the remaining modules for which it requires indexes.

WARNING: Indexes shift when a module is freed. If a module
assumes that an IMC index is valid, the system will probably
crash. It is important to call the OMM to get new indexes
after any module is freed. This can only be done safely after
receiving a MSG_DIED message.

MSG_BORN ($08)

After a new module has been loaded, the BORN message is sent
to all loaded drivers (including the one just loaded). The unique
16-bit ID of the new module is placed at $3C.

Upon entry, the Y register will contain the index to new module.

At this time, each module using IMC should call the OMM to
get indexes for the modules for which it requires indexes. In this
manner, the loading sequence of modules can be completely
arbitrary, yet all modules will know when new ones come to life.

2: BUILDING A MODULE

23

MSG_IDLE ($09)

This message is reserved for future use.

MSG_INFO ($0A)

The OMM sends the INFO message to a module immediately
after it is loaded. All modules must service this request for the
OMM to operate correctly. The module should perform only
one task at this time, and that is to place the address of an
information string into locations $3C and $3D and return.

The information string contains the revision date, title, and
version of the module, in high-order ASCII (bit 7 set) using the
following format:

16- May- 90 Amper Wor ks 3. 0

The version number should follow format of version numbers as
described in Chapter One.

The string and the MSG_INFO handler must remain intact and
unmodified for the duration of the module’s life in memory, as it
can be requested at any time.

2: BUILDING A MODULE

Utility
Functions

To modules, the OMM itself appears to be a module. Using
IMC, modules can call upon utility routines built into the OMM
to simplify common tasks:

OMM_GETID Gets the index of a module based on ID
OMM_XOAMP Executes original ampersand vector
OMM_FREE Frees a module
OMM_PUTWORD Stores a word value to a BASIC variable
OMM_PUTSTR Stores a string to a BASIC variable
OMM_GETSTR Gets the descriptor of a string expression
OMM_PADDEC Prints a word in decimal, right justified
OMM_C2PSTR Copies string to a Pascal formatted string
OMM_COUNT Returns the count of loaded modules
OMM_GETINFO Gets the info string of a module

24

These functions are performed by calling the OMM just as you
would call another module. The OMM’s index is represented by
the assembler equate called OMM_ID ($00). Calls to the OMM
are made by calling OMMVEC ($3F8). Example:

l dy #f unct i on ; Y = OMM f unct i on
l dx #OMM_I D ; X = OMM i ndex
j sr OMMVEC ; cal l t he OMM vect or

Some functions require arguments or return arguments in
memory locations, flags, or registers.

OMM_GETID ($00)

For a module to communicate with another, it must be able to
tell the OMM which module it wishes to reference. This is done
by using the loaded module’s index. A program can obtain the
index for a module by asking the OMM to look it up based on its
unique ID. To obtain the index, place the ID of the module into
locations $3C and $3D, and then call the OMM with the
OMM_GETID function.

2: BUILDING A MODULE

f

Getting a Number from BASIC

A function for obtaining the numeric value from an Applesoft expression or
variable is not included in the OMM’s repertoire since it is easy to do this
using two methods listed here:

j sr GETBYTE ; ($E6F8) Put 8- bi t val ue i nt o X

or

j sr FRMNUM ; ($DD67) Eval uat es a 16- bi t number
j sr GETADR ; ($E752) St or es wor d at $50 and $51

; al so: Y = l ow byt e, A = hi gh byt e

25

 For example, to obtain the index for the AmperWorks module,
the following code can be used:

l da #’ a’ ; Amper Wor ks I D i s ‘ aw’
st a $3C ; (or $7761)
l da #’ w’
st a $3D
l dy #OMM_GETI D ; Y = f unct i on number
l dx #OMM_I D ; X = OMM i ndex
j sr OMMVEC ; cal l t he OMM
st x awI ndex ; save t he i ndex

If the ID was found, the module’s index is returned in the X-
register and the carry flag is clear. The OMM returns with $00
in the X-register and the carry flag set if the ID search fails.

OMM_XOAMP ($01)

This function causes the OMM to call the address of the original
ampersand handler installed before the OMM was launched. It
is included in case your module does further ampersand parsing,
then discovers that the command the user has given is not one of
its own.

OMM_FREE ($02)

A module can instruct the OMM to free another module by
placing the index of the module to purge at location $3C.
Example:

l da awI ndex ; get r i d of Amper Wor ks
st a $3C ; put t he i ndex her e
l dy #OMM_FREE ; f r ee f unct i on number
l dx #OMM_I D ; t he OMM’ s i ndex
j sr OMMVEC ; cal l t he OMM

WARNING: OMM_FREE should never be used by a module
that resides lower in memory than the module to purge. When
the OMM is finished relocating the remaining modules,
control returns to the calling module. If the module has
moved, the return address is invalid, and the system crashes.

f

f

2: BUILDING A MODULE

26

CAUTION: This function should be avoided, unless you really
know what you’re doing, as the order in which modules are
loaded cannot be safely assumed. It is possible to push a valid
return address onto the stack (e.g., the RESET handler at
$FA62) and then JMP to OMMVEC. This ensures a valid return
address and no crashing after removing a module.

OMM_PUTWORD ($03)

To store a numeric value to an Applesoft variable (pointed to by
the Applesoft text pointer), the OMM_PUTWORD function can
be used. Example:

l da #5 ; st or e a 5 (l ow byt e)
st a $3C
l da #0 ; zer o (hi gh byt e)
st a $3D
l dy #OMM_PUTWORD
l dx #OMM_I D
j sr OMMVEC

Store the value into locations $3C and $3D. If a byte value is to
be stored, put the byte into $3C and write $00 to $3D.

OMM_PUTSTR ($04)

To store string data to an Applesoft variable pointed to by the
text pointer, use the OMM_PUTSTR function. It requires a
string descriptor at location LOWTR ($9B). A string descriptor
consists of three bytes of information: a length byte, and two
bytes that point to the first character of the string. Example:

l da #15 ; st or e 15 char act er s
st a $9B
l da #$200 ; l ocat i on i s at i nput buf f er
st a $9C
l da #>$200
st a $9D
l dy #OMM_PUTSTR
l dx #OMM_I D
j sr OMMVEC

f

f

2: BUILDING A MODULE

27

OMM_GETSTR ($05)

This function evaluates the string expression at the Applesoft
text pointer and returns its descriptor in location LOWTR ($9B).
LOWTR will hold the length of the string, and at LOWTR+1 is a
two-byte pointer to the first character in the string.

OMM_PADDEC ($06)

Printing a value in decimal, right-justified (space-padded), is a
chore for any machine language program. This function makes
it easy. Put the width of the field, in which the number should be
padded, into location LOWTR ($9B). Put the value into
locations $9C and $9D (LOWTR+1). Then make this function
call. After printing the number through COUT, the cursor
follows the last digit printed.

OMM_C2PSTR ($07)

Copies a string of characters to a buffer that will begin with a
count byte, followed by the string itself. In other words, it makes
a Pascal-formatted string. These are used frequently when
dealing with ProDOS pathnames.

The descriptor of the source string is stored at LOWTR ($9B),
which is a count byte followed by a two-byte pointer to the
string. Put the target buffer address into locations $3C and $3D.

OMM_COUNT ($08)

This function returns the count of the loaded modules in the A-
register.

f

f

f

f

Tip: Integration With Many Modules

If your module must keep track of indexes for one or more modules, have it
service the MSG_BORN and MSG_DIED messages by a single routine.
That routine would simply call the OMM to obtain indexes for the modules
it desires with the OMM_GETID function.

2: BUILDING A MODULE

28

OMM_GETINFO ($09)

Use this function to obtain the info string from a module. Before
making the call, put the module’s index (not ID) number in the
byte at $3C:

l da modul eI ndex
st a $3C
l dy #OMM_GETI NFO
l dx #OMM_I D
j sr OMMVEC

On return, $3C and $3D contains a pointer to the requested
module’s info string.

f

Interfaces
& Sources

The OMM disk comes with interface files containing equates for
the OMM. If you use ORCA/M or APW, the ORCA directory
contains a file called OMM.EQU with all the equates you need.
If you use Merlin, the MERLIN directory contains the OMM.S
file with equates for Merlin.

Source code templates for your own modules can be found in the
ORCA (TEMPL.ASM) and MERLIN (TEMPL.S) directories.
These are skeleton programs with a “ fill in the blanks” format to
make it easier to create new modules. Also included in these
directories is a sample program module (hex/decimal number
conversion) with sources for both ORCA/M and Merlin.

Buffer
Space

Modules should include internal buffers for space needed during
the course of their lifetime. This is done by defining storage at
assembly time. However, it may be safe to allocate dynamic
buffers at runtime by calling ProDOS BASIC’s “GetBufr”
routine, but only if the buffer is used temporarily and then
discarded with “FreeBufr” between OMM service calls. Long-
term preservation of a buffer allocated through ProDOS BASIC
is not guaranteed due to the nature of the OMM and the way it
dynamically manages modules.

2: BUILDING A MODULE

29

Absolute
References

Care should be taken when an absolute reference is made to a
location within a module. Since modules are “slippery”, pointers
to data items in other modules may become invalid.

CAUTION: Pointers to interrupt service routines (in modules
that have been moved) can have disastrous effects.

Whenever possible, all communication between modules that
share common data should use the IMC to transfer pointers to
data items. When modules shift, utilize IMC to update the
pointers for those data items. The OMM provides mechanisms
for updating absolute references in movable code with the REL1
and REL2 messages.

Opcode
Usage

Your programs can use 6502, 65C02, and even 65816 instruc-
tions. But, 65816 programmers note that the OMM cannot
properly relocate 65816 code that uses the 16-bit immediate
mode references for the accumulator and index registers. It is
possible to place such code into the data section where it will
execute correctly, so long it does not use absolute references to
locations within the module.

If you need to use a BRK instruction in your code section, be
sure to use a version 1 header (hVERS = $0001). Format
considerations of a version 1 module are the same as for version
0, except that the end of the code section ends with three zero
bytes instead of one. Also, inline BRKs occupy two bytes, not
just one. Users of the 6502 and 65C02 should, therefore, use
two BRK instructions in a row. 65816 programmers should use
the standard two-byte BRK instruction.

NOTE: Programs that include 65816 opcodes will relocate
properly even when run on a CPU that does not support
65816 instructions. The OMM allows you to put CPU
dependent code into your programs. You must, however,
make sure that the program can run on the machine in use.

2: BUILDING A MODULE

30

2: BUILDING A MODULE

31

&

CHAPTER THREE

AmperWorks
This chapter describes AmperWorks, an OMM module provid-
ing extended commands for Applesoft. Using AmperWorks
commands in your BASIC programs can speed them up
dramatically, as well as provide functionality that is impossible
or difficult to do with BASIC alone.

Introduction Most AmperWorks commands are stored in the AmperWorks
module. Use the OMM’s &LOAD GET command to load it
into memory.

A few AmperWorks commands are kept in other modules. For
example, the string storage commands (e.g., &STORE and
&RESTORE) are found in Store256, Store512, and StoreGS.
The &TIME command is kept in the Time and TimeGS mod-
ules. If your program will use these commands, decide which
module is best for your computer and use &LOAD GET to load
it into memory.

Abbreviations are used for different types of arguments that
AmperWorks commands require. Refer to Appendix E,
“BASIC Syntax”, for an explanation of the abbreviations.

&

32

3: AMPERWORKS

Command
Summary

AmperWorks consists of the following commands:

/ Get file information
\ Set file information
< Return the parent path of a file
ADD Add a file to the end of another file
ASC Convert a string to ASCII text
COPY Copy a file to another file
ERASE Erase an array from memory
FILES Put a directory’s filenames into an array
GET Get characters into a string
HLIN Draw a horizontal line with a character
LCASE Convert a string to lowercase
LEFT$ Left-justify a string within a field
LIST Display the contents of a file
MID$ Change the mid-portion of a string
MLI Perform a ProDOS MLI function
ONERR Fix ONERR bug and get error information
POKE Poke a list of values into memory
POP Reset Applesoft’s stack
POS Find a pattern within a string
PRINT Print to the screen during file output
READ Read characters into a string
REPT Start a REPT-UNTIL loop
RESTORE Restore a storage cell to a string
RESTORE GOTO Set the next DATA statement line number
RIGHT$ Right-justify a string within a field
SPC Strip spaces from the ends of a string
SRT Sort an array
STORE Store a string into a memory storage cell
STORE CLEAR Erase all strings in storage
SWAP Swap the values of two variables
TFILES Put a directory’s filenames into an array
TIME Return the date and time
UCASE Convert a string to uppercase
UNTIL Mark the end of a REPT-UNTIL loop
VAL Evaluate an expression and return the result
VLIN Draw a vertical line with a character

33

3: AMPERWORKS

MID$ (INFO$, 1,1) =

MID$ (INFO$, 2,2) =

MID$ (INFO$, 4,1) =

MID$ (INFO$, 5,1) =

MID$ (INFO$, 6,2) =

MID$ (INFO$, 8,1) =

MID$ (INFO$, 9,2) =

MID$ (INFO$,11,2) =

MID$ (INFO$,13,2) =

MID$ (INFO$,15,2) =

MID$ (INFO$,17,2) =

Parameter Count

Address of Pathname

Access Bits

Filetype

Auxiliary Filetype

Storage Type

Blocks Used

Modification Date

Modification Time

Creation Date

Creation Time

/
(Get Info)

&

& / st r exp, st r var

Gets information on the file described by strexp. Eighteen
characters of information are returned in strvar. If strvar comes
back empty (equal to “”), then the pathname was invalid or non-
existent. This is useful as an alternative to ProDOS BASIC’s
VERIFY command.

The information returned follows the structure of ProDOS’s
GET_FILE_INFO parameter table. Since the information string
contains control characters, your programs can convert their
ASCII values to meaningful numbers.

34

3: AMPERWORKS

Sample Program

10 & / " / GRACELAND/ ELVI S" , I $
20 I F I $ = " " THEN PRI NT " El vi s t aken by al i ens! "
30 I F I $ > " " THEN PRI NT " El vi s l i ves! "

NOTE: To use a partial pathname, the ProDOS prefix must
be set.

Also See
\

\
(Set Info)

&

& \ st r exp, st r var

Sets information on the file described by strexp. Eighteen
characters in strvar must follow the structure of ProDOS’s
SET_FILE_INFO parameter table (as illustrated on the previous
page).

Sample Program

10 & / " DOWNLOAD" , I $: REM Get i nf o on DOWNLOAD
20 & MI D$ (I $, 5) = CHR$(6) : REM Change f i l et ype
30 & \ " DOWNLOAD" , I $: REM Set i nf o on DOWNLOAD

Sample Run

Line 10 gets file information on DOWNLOAD and places it into
I$. Line 20 changes the fifth character in I$, the filetype field for
the ProDOS SET_FILE_INFO parameter list. Line 30 uses &\
to set new information on DOWNLOAD. The ASCII value of 6
used in Line 20 sets DOWNLOAD to a BIN file.

NOTES: AmperWorks ignores the first three characters of the
information string since they may have different meanings in
future versions of ProDOS BASIC. To use a partial pathname
with this command, the prefix must be set.

Also See
/

35

<
(Parent
Directory)

&

& < st r exp, st r var

Separates the prefix from the file name in the complete
pathname specified by strexp. The sample program demon-
strates its features.

Sample Program

10 PN$ = " / a/ dev/ mw/ i nst al l "
20 PRI NT " Pat hname: " , PN$
30 & < PN$, P$
40 PRI NT " Pat h: " , P$
50 N$ = MI D$ (PN$, LEN (P$) + 2)
60 PRI NT " Name: " , N$

] RUN

Pat hname: / a/ dev/ mw/ i nst al l
Pat h: / a/ dev/ mw
Name: i nst al l

ADD

&

3: AMPERWORKS

& ADD (st r exp1 TO st r exp2)

Appends the filename described by strexp1 to the filename
described by strexp2. If the target file does not exist, it is created
and the contents of the source file are copied. Any filetype of
any size may be added—the target file retains its original file
information. The ProDOS prefix must be set in order to use a
partial pathname.

Samples

& ADD (" / r am/ t emp" TO " / di sk/ l ogf i l e")
& ADD (FI LE$(1) TO FI LE$(2))

If the disk becomes full, the target file is not deleted, nor is it left
with part of the source file appended to it. AmperWorks leaves
the target file unchanged in the event of a disk error.

Also See
COPY

36

ASC

&
& ASC st r var

Converts the characters in a string variable to standard ASCII
values (the high-bits are cleared). This is useful for programs
working with strings containing non-ASCII characters.

COPY

&
& COPY (st r exp1 TO st r exp2)

Copies the filename described by strexp1 to the filename
described by strexp2. If the target file exists, it is overwritten.
Any file of any type and size may be copied. The ProDOS
prefix must be set in order to use a partial pathname.

Samples

& COPY (" / dev/ t est " TO " / dev/ t est . bak")
& COPY (TAKEMEOUT$ TO THEBALLGAME$)

If the disk becomes full during a COPY, the operation is
cancelled and the target file will not exist.

Also See
ADD

ERASE

&
& ERASE (ar r ayname)

Removes an array (of any kind or dimension) from memory,
allowing you to create and erase arrays as needed, giving your
programs additional free memory. ERASE requires the name of
an array only—no subscript is required.

Sample Program

10 DI M F$(300)
20 & FI LES (" / RAM5" , F$) , N
30 GOSUB 1000: REM Wor k wi t h t he F$ ar r ay
40 & ERASE (F$) : REM Now er ase i t f r om exi st ence

3: AMPERWORKS

37

FILES

&
& FI LES (st r exp, st r var [, numexp1, numexp2]) ,

numvar 1 [, numvar 2]

Reads filenames from the directory described by strexp and
stores them in an array described by strvar.

The number of names placed in the array is returned in numvar1,
and the actual number of files residing in the directory (matching
any selection criteria) is returned in the optional numvar2. strvar
must be DIMensioned before using FILES to avoid an OUT OF
DATA ERROR.

The optional numexp1 is a filetype filter, used as search criteria.
If numexp is 255 for example, only SYS-type names are placed
in the array (the numeric value for a SYStem file is 255). If
numexp is a negative number, the logic is reversed, placing all
names in the array except for those having types equal to the
absolute value of numexp. For example, to gather all the names
that are not subdirectories (type 15), numexp would be -15.

The optional numexp2 is an invisibility filter code:

0 Include visible files only (default)
1 Include all files
2 Include invisible files only

Example

& FI LES (" / A" , F$, , 2) , N

This reads all invisible names found on /A, placing them into the
F$ array. The count is returned in N. Since the type filter option
is omitted, all types are possible. If you include a type of 4
(TXT), it finds all invisible text files.

FILES cannot be used in immediate mode since the contents of
the input buffer are destroyed. The ProDOS prefix must be set
in order to use a partial pathname.

Also See
TFILES

3: AMPERWORKS

38

GET

&
& GET [(numexp [, st r exp])] [, " . . . "] [, st r var]

Gets data from an opened file. AmperWorks’ GET is similar to
Applesoft’s, except it allows input of multiple characters,
including commas, colons, and quotes. And unlike Applesoft’s
INPUT, it does not affect the display. Input is terminated after a
carriage return is entered, or when the character input count
reaches 255 (or the optional numexp limit). It follows the same
format for its arguments as discussed in the &READ command.

Samples

& GET A$: REM Get s up t o 255 char act er s i nt o A$
& GET (5) : REM Get s 5 char act er s (di scar ded)
& GET (1) , " Any Key" : REM Get s 1 char act er w/ pr ompt
& GET (0) , " Pr ess Ret ur n" : REM Wai t s f or a RETURN
& GET (15) , " Code: " , A$: REM Get s up t o 15 i nt o A$

Also See
READ

HLIN

&
& HLI N numexp1, numexp2

Draws a horizontal line, the length determined by numexp1, with
the character whose ASCII code is determined by numexp2.
Both arguments must be numeric values from 0 to 255.

Samples

& HLI N 10, ASC(" * ") * * * * * * * * * *
& HLI N 15, 65 AAAAAAAAAAAAAAA
& HLI N 20, 65 + 1 BBBBBBBBBBBBBBBBBBBB

Creative use of &HLIN and &VLIN allows you to quickly draw
boxes and borders.

Also See
VLIN

3: AMPERWORKS

39

LCASE

&
& LCASE (st r var)

Converts a string variable’s uppercase letters to lowercase.

Sample Program

10 A$ = MI D$(" Amper Wor ks" , 1)
20 PRI NT A$
30 & LCASE (A$)
40 PRI NT A$

] RUN

Amper Wor ks
amper wor ks

Also See
UCASE

LIST

&
& LI ST st r exp

LIST displays the contents of the file described by strexp, useful
for with files containing readable text. The listing may be
paused with control -S and restarted with any key. Pressing esc

stops the listing.

Samples

& LI ST " / mai l / msg. 1234"

& LI ST FI LE$

This command cannot be used in immediate mode since the
contents of the input buffer are destroyed. The ProDOS prefix
must be set in order to use a partial pathname.

3: AMPERWORKS

40

LEFT$

&
& LEFT$ (st r exp, numexp1 [, numexp2]) , st r var

Left-justifies a string within a specified width—padding a string
so that its length becomes a fixed value. This is useful when
displaying tabular information, or when writing data to a random
access text file.

strexp is the source string to be left-justified into strvar. The
width of strvar is determined by numexp1, and is a value from 1
to 255. Spaces are used for padding, unless the optional
numexp2 is used; its ASCII value becomes the padding charac-
ter. For example, to left-justify a string into a 20-character field
with periods, use:

& LEFT$ (A$, 20, 46) , B$

(46 is the ASCII value for the period character).

If the length of strexp is greater than the field width given in
numexp1, the contents of strexp are truncated before being
placed into strvar.

Also See
RIGHT$, SPC

MID$

&
& MI D$ (st r var , numexp1 [, numexp2]) = st r exp

Replaces the middle portion of a string with the strexp that
follows the equal sign. It overlays strvar at the position specified
by numexp1. The optional numexp2 is the number of characters
to overlay. If numexp2 is omitted, the length of strexp is
assumed. For example, if A$ = “AAAAA”, then the following
changes it to “AZZZA”:

& MI D$ (A$, 2, 3) = " ZZZZZZZZZ"

Also See
POS

3: AMPERWORKS

41

MLI

&
& MLI (numexp1, numexp2) , numvar

Performs a ProDOS Machine Language Interface (MLI)
command specified by numexp1. The address of the MLI
parameter table is given in numexp2. After the MLI command is
performed, the result code is stored in numvar. It is useful for
performing commands that ProDOS BASIC does not already
provide, such as retrieving a file’s length in bytes, reading a
block of data from disk, and moving the “mark” (position) in an
open file to a new offset, among many others. Further explana-
tion of the MLI goes beyond the scope of this manual, though
there are many good books on the subject.

Sample Program

10 TBL = 768 : L = TBL + 2
20 DEF FN PL(X) = PEEK(X) + PEEK(X+1) * 256

 + PEEK(X+2) * 65536
30 PRI NT CHR$(4) " OPEN TEST. FI LE, TTXT"
40 REF = PEEK (48848)
50 & POKE TBL, 2, REF
60 & MLI (209, TBL) , ERR : REM Get _EOF
70 PRI NT CHR$(4) " CLOSE"
80 I F ERR THEN PRI NT " Er r or : " ERR: END
90 PRI NT " Fi l e' s l engt h i s " FN PL(L)

] RUN

Fi l e' s l engt h i s 32768

3: AMPERWORKS

MLI Command Hex Dec

ALLOC_INT $40 64
DEALLOC_INT $41 65
QUIT $65 101
READ_BLOCK $80 128
WRITE_BLOCK $81 129
GET_TIME $82 130
CREATE $C0 192
DESTROY $C1 193
RENAME $C2 194
SET_INFO $C3 195
GET_INFO $C4 196
ONLINE $C5 197
SET_PREFIX $C6 198

MLI Command Hex Dec

GET_PREFIX $C7 199
OPEN $C8 200
NEWLINE $C9 201
READ $CA 202
WRITE $CB 203
CLOSE $CC 204
FLUSH $CD 205
SET_MARK $CE 206
GET_MARK $CF 207
SET_EOF $D0 208
GET_EOF $D1 209
SET_BUF $D2 210
GET_BUF $D3 211

42

ONERR

&
& ONERR [numvar 1, numvar 2]

Performs two special tasks when placed at the beginning of an
ONERR GOTO error handling routine. First, it fixes the stack
that Applesoft’s error handling leaves corrupted, avoiding
subsequent RETURN WITHOUT GOSUB errors in subroutines.
Second, if included, the error code is placed in numvar1 and the
program line where the error occurred is stored in numvar2.

Sample Program

10 ONERR GOTO 40
20 PRI MT " Mi sspel l ed PRI NT, dummy! "
30 END
40 & ONERR CODE, LI NE
50 PRI NT " Er r or #" ; CODE;
60 PRI NT " i n l i ne " ; LI NE

] RUN

Er r or #16 i n l i ne 20

Since &ONERR affects Applesoft’s stack, never issue
&ONERR unless an error has occurred.

POKE

&
& POKE numexp1, numexp2 [, numexp3. . .]

Pokes multiple numeric values into consecutive memory
locations starting at the address specified by numexp1. Example:

& POKE 768, 173, 31, 192, 141, 67, 3, 141, . . . etc.

The above example stores 173 at location 768, 31 at location
769, 192 at location 770, and so on. This allows small assembly
language programs to be stuffed quickly into memory.

As long as their values are within 0 to 255, you can also POKE
numeric variables and expressions into memory with &POKE.

3: AMPERWORKS

43

POP

&
& POP

Removes all GOSUB-RETURNs, FOR-NEXT loops, and
REPT-UNTIL loops from the stack. By contrast, Applesoft’s
POP statement removes only the most recent GOSUB’s “return”
line from the stack. Use POP at any point in your program
where the normal flow has been incorrectly or artificially
diverted.

POS

&
& POS [RI GHT$] ([numexp,] st r exp1, st r exp2) , numvar

Searches for a pattern within a string. It returns the position of
strexp2 within strexp1 starting at the optional numexp argument
(the offset from the start of strexp1). If a match is found, the
position is placed in numvar. If no match is found, numvar
contains zero. Searching starts at the beginning of the string and
continues to the end. If the optional RIGHT$ keyword is given,
the search begins at the end of the string and works toward the
start of the string.

Sample Program

10 REM Thi s pr ogr am sear ches a st r i ng f or al l t he
20 REM ' e' l et t er s and poi nt s t o each wi t h a mar ker
30 OLDP = 0: REM I ni t i al i ze of f set
40 A$ = " The Appl e I I GS Per sonal Comput er " : PRI NT A$
50 & POS (OLDP + 1, A$, " e") , P
60 I F NOT P THEN END: REM St op! No mor e e' s f ound
70 PRI NT SPC(P - OLDP - 1) " ^" ;
80 OLDP = P: GOTO 50

] RUN

The Appl e I I GS Per sonal Comput er
 ^ ^ ^ ^

Also See
LCASE, UCASE

3: AMPERWORKS

44

PRINT

&
& PRI NT [. . .]

This is identical to Applesoft’s PRINT, except that it displays its
arguments to the screen while a file is open for output. With it,
you can write to a file and print to the screen without having to
switch off file output.

READ

&
& READ [(numexp [, st r var])] [, " . . . "] [, st r var]

Reads input until return is entered. Commas, colons, and
quotes, normally refused by Applesoft, are allowed. Unlike
AmperWorks’ GET statement, READ ignores all control
characters except for the following:

Code Key Action

8 Rubout
9 tab Tab to next position (modulo 8)

13 return End of input
23 control -W Delete word
24 control -X Clear input

127 delete Rubout

The optional numexp defines the maximum number of characters
that may be read. If that number is reached, further input is
ignored.

If the optional strvar is included after numexp, word wrap is
enabled. When the total number of characters allowed have
been entered, word wrap is performed, stuffing the wrapped
characters into the optional strvar.

Sample Program

10 REM Wor d Wr ap Test Pr ogr am
20 I $ = " " : REM St uf f st r i ng st ar t s out empt y
30 & REPT
40 & READ (38, I $) , " : " , A$
50 & UNTI L (A$ = " ")

3: AMPERWORKS

45

Sample Run

Text is entered at the “ :” prompt. When input reaches column
39, words wrap around the screen to the next line. When this
happens, the wrapped word is stored in I$ while the rest of the
line is saved in A$. When program flow resumes at Line 40, the
contents of I$ are stuffed into the input line, simulating real word
wrap. The program stops when return is pressed on a new line.

If numexp is negative and a stuff string is present, the stuff string
is placed into the input line, but word wrapping is disabled.

If numexp is zero, return is the only key accepted.

If (numexp) is omitted, up to 255 characters may be entered.

NOTE: The optional prompt string may be used to prompt the
user for input. The final string variable is optional—input is
discarded.

Samples

& READ A$: REM Reads a l i ne of t ext i nt o A$
& READ (5) : REM Reads 5 char act er s (di scar ded)
& READ (1) , " Any Key" : REM Reads 1 char act er
& READ (0) , " Pr ess Ret ur n" : REM Wai t s f or a r et ur n
& READ (15) , " Phone: " , A$: REM Reads 15 i nt o A$
& READ (N) , C$: REM Reads N char act er s i nt o C$
& READ (78, W$) , L$(I) : REM Reads wi t h wor dwr ap

Also See
GET

REPT

&
& REPT

Begins a REPT-UNTIL loop. A REPT-UNTIL block is a group
of statements or program lines, surrounded by &REPT and
&UNTIL. The block executes repeatedly until the expression in
the UNTIL statement is true. These blocks may be nested many
levels deep.

3: AMPERWORKS

46

Sample Program

10 N = I NT (20 * RND(1)) + 1
20 & REPT
30 & REPT
40 I NPUT " Guess my number (1- 20) " ; X
50 & UNTI L (X >= 1 AND X <= 20)
60 I F X <> N THEN PRI NT " Wr ong. " : FOUND = 0
70 I F X = N THEN PRI NT " You got i t ! " : FOUND = 1
80 & UNTI L (FOUND)

If you must leave a REPT-UNTIL loop prematurely, it is best to
prime the UNTIL condition, and GOTO the line number where
the UNTIL statement can be found. As with FOR-NEXT and
GOSUB-RETURN, branching out of a REPT-UNTIL loop
leaves garbage on the stack, causing your program to misbehave.

Also See
POP, UNTIL

RESTORE

&
& RESTORE numexp TO st r var

Retrieves a string from the storage cell identified by numexp,
storing it in strvar. This command is available only if a Store
module is loaded (e.g., Store256, Store512, or StoreGS).

Also See
STORE, STORE CLEAR

3: AMPERWORKS

RESTORE
GOTO

&

& RESTORE GOTO . . .

Selects the next program line where DATA is to be read with
Applesoft’s READ statement. Applesoft’s RESTORE always
resets the next DATA line to the beginning of your program.
AmperWorks gives you more flexibility.

47

Sample Program

10 DATA A, B, C
20 & RESTORE GOTO 50
30 READ A$
40 PRI NT A$
50 DATA E, F, G

] RUN

E

Applesoft initially sets the next DATA line to the first line in this
program. Line 20 uses RESTORE GOTO to change to the next
DATA statement in Line 50. Line 30 uses the READ statement,
which actually reads DATA from Line 50, even though it has not
read the DATA in Line 10 yet. Instead of “A”, an “E” is printed,
which proves this sample works.

RIGHT$

&
& RI GHT$ (st r exp, numexp1 [, numexp2]) , st r var

Right-justifies a string within a specified width, padding it with
spaces so that the length becomes a fixed value.

strexp is the source string, right-justified into strvar. The width
of strvar is determined by numexp1, and has a value from 1 to
255. Spaces are used for padding, unless the optional numexp2
is included; its ASCII value is the padding character.

If the length of the string is greater than the field width, the
rightmost contents of strexp are placed into strvar.

Also See
LEFT$, SPC

3: AMPERWORKS

48

SPC

&
& SPC (st r exp [, numexp]) , st r var

Strips leading and trailing spaces from strexp and stores the new
string into strvar. Spaces are stripped, unless the optional
numexp is given; characters with its ASCII value are stripped
instead.

Sample Program

10 A$ = " Thi s i s a t est "
20 PRI NT " [" ; A$; "] "
30 & SPC (A$) , A$
40 PRI NT " [" ; A$; "] "

] RUN

[Thi s i s a t est]
[Thi s i s a t est]

Also See
LEFT$, RIGHT$

SRT
(Sort)

&

& SRT (ar r ayname, numexp)

Sorts any kind of single-dimension array described by
arrayname (the variable name without a subscript). The number
of elements to sort is specified by numexp. The array must be
DIMensioned, even if it has less than 10 elements.

Sample Program

10 E = 10
20 DI M N(E)
30 FOR I = 1 TO E
40 N(I) = I NT (200 * RND(1))
60 NEXT
60 & SRT (N, E)
70 FOR J = 1 TO E
80 PRI NT N(J) ; SPC(5)
90 NEXT

3: AMPERWORKS

49

] RUN

3 8 34 37 65 118 190 195

3: AMPERWORKS

STORE

&
& STORE st r exp TO numexp

Stores a string described by strexp into a storage cell specified by
numexp. This command is available only if a Store module is
loaded, such as Store256, Store512, or StoreGS.

Stored data is not erased after running a program, or after typing
NEW or CLEAR. The string is placed into the storage buffer at
the first unused location. Subsequent strings are placed after any
previous strings stored in the buffer. You can store up to 255
strings, as long as the strings do not exceed buffer capacity.

Each string that AmperWorks puts into the buffer includes two
bytes of overhead. The first byte is the string’s ID number. The
second byte is the length of the string. With Store256, providing
a 256-byte buffer, you could have at least 84 one-character
strings in storage. Or, you could have only one 254 character
string filling the entire buffer. Storing a null string removes a
previously stored string with the same ID. Null strings and their
overhead are not stored, however. They occupy no space.

Strings may be stored with any arbitrary ID numbers from 0 to
255, and need not be stored in order. Examples:

& STORE " Foo" TO 100
& STORE " Bar " TO 20

Restoring a string by its ID returns the string as long as the string
exists in storage, otherwise a null string is returned. Examples:

& RESTORE 100 TO A$: REM r est or es " Foo"
& RESTORE 20 TO A$: REM r est or es " Bar "
& RESTORE 42 TO A$: REM r est or es " " (not hi ng)

Also See
RESTORE, STORE CLEAR

50

STORE
CLEAR

&

& STORE CLEAR

Clears all strings from storage. This command requires a Store
module to be loaded before it can be used.

Also See
RESTORE, STORE

TFILES

&
& TFI LES (st r exp, st r var [, numexp]) , numvar 1

[, numvar 2]

TFILES is identical to FILES, except filenames placed into the
string array may end with special characters. DIR files end with
a slash (/). BAS, BIN, SYS, and CMD files end with an asterisk
(*). TFILES is mostly useful for display purposes.

Also See
FILES

SWAP

&
& SWAP (var 1, var 2)

Exchanges the values of two variables or array elements,
indispensable for sorting and data processing. After SWAP is
executed, the original value of var1 is stored in var2 and the
original value of var2 is stored in var1. Both var1 and var2 must
be of the same variable type—string, integer, or floating point.

Sample Program

10 I NPUT " Ent er a val ue f or X: " ; X
20 I NPUT " Ent er a di f f er ent val ue f or Y: " ; Y
30 & SWAP (X, Y)
40 PRI NT " Now X = " ; X; " and Y = " ; Y

] RUN

Ent er a val ue f or X: 65
Ent er a di f f er ent val ue f or Y: 816
Now X = 816 and Y = 65

3: AMPERWORKS

51

TIME

&
& TI ME (st r var)

Returns the current day, date and time from the Apple IIGS
built-in clock or ProDOS-compatible clock card. With string
functions, you can strip out certain parts of the time string as
needed for your application.

Sample Program

10 & TI ME (T$)
20 PRI NT " Today i s: " ; T$

] RUN

Today i s: Mon, 8 Sep 86 03: 04: 05

Some clock systems do not support the day of week nor seconds
through ProDOS. On these systems, TIME returns a string with
the first four characters as spaces, and seconds are always “00”.

Today i s: 8 Sep 86 03: 04: 05

If a clock is not installed, using TIME returns a string with a
blank day of week and month, and everything else is zero:

Today i s: 0 00 00: 00: 00

This command is available only if a Time module is loaded, such
as Time or TimeGS.

UCASE

&
& UCASE (st r var)

Converts a string variable’s lowercase letters to uppercase.

Also See
LCASE

3: AMPERWORKS

52

UNTIL

&
& UNTI L (bool exp)

UNTIL marks the end of a REPT-UNTIL block. The statements
between the &REPT and &UNTIL markers repeat until the
Boolean expression within parentheses is true. When the
condition is met, program flow continues after the UNTIL
statement.

Also See
REPT

VAL

&
& VAL st r exp TO numvar

Evaluates the numeric expression contained in strexp, returning
the result in numvar.

Sample Program

10 I NPUT " Ent er an expr essi on: " ; A$
20 & VAL A$ TO N
30 PRI NT " The r esul t i s: " ; N

] RUN

Ent er an expr essi on: si n(l og(3) * 10) return

The r esul t i s: - . 999955336

Also See
REPT

VLIN

&
& VLI N numexp1, numexp2

Draws a vertical line, the height determined by numexp1, with
the character whose ASCII code is determined by numexp2.
Both arguments must be numeric values from 0 to 255. This is
identical to &HLIN, except that the line is drawn vertically.

Also See
HLIN

3: AMPERWORKS

53

APPENDIX A

ASCII Chart

32 $20 SPC 160 $A0

33 $21 ! 161 $A1

34 $22 " 162 $A2

35 $23 # 163 $A3

36 $24 $ 164 $A4

37 $25 % 165 $A5

38 $26 & 166 $A6

39 $27 ' 167 $A7

40 $28 (168 $A8

41 $29) 169 $A9

42 $2A * 170 $AA

43 $2B + 171 $AB

44 $2C , 172 $AC

45 $2D - 173 $AD

46 $2E . 174 $AE

47 $2F / 175 $AF

48 $30 0 176 $B0

49 $31 1 177 $B1

50 $32 2 178 $B2

51 $33 3 179 $B3

52 $34 4 180 $B4

53 $35 5 181 $B5

54 $36 6 182 $B6

55 $37 7 183 $B7

56 $38 8 184 $B8

57 $39 9 185 $B9

58 $3A : 186 $BA

59 $3B ; 187 $BB

60 $3C < 188 $BC

61 $3D = 189 $BD

62 $3E > 190 $BE

63 $3F ? 191 $BF

0 $00 ^ @ 128 $80

1 $01 ^ A 129 $81

2 $02 ^ B 130 $82

3 $03 ^ C 131 $83

4 $04 ^ D 132 $84

5 $05 ^ E 133 $85

6 $06 ^ F 134 $86

7 $07 ^ G 135 $87

8 $08 ^ H 136 $88

9 $09 ^ I 137 $89

10 $0A ^ J 138 $8A

11 $0B ^ K 139 $8B

12 $0C ^ L 140 $8C

13 $0D ^ M 141 $8D

14 $0E ^ N 142 $8E

15 $0F ^ O 143 $8F

16 $10 ^ P 144 $90

17 $11 ^ Q 145 $91

18 $12 ^ R 146 $92

19 $13 ^ S 147 $93

20 $14 ^ T 148 $94

21 $15 ^ U 149 $95

22 $16 ^ V 150 $96

23 $17 ^ W 151 $97

24 $18 ^ X 152 $98

25 $19 ^ Y 153 $99

26 $1A ^ Z 154 $9A

27 $1B ^ [155 $9B

28 $1C ^ \ 156 $9C

29 $1D ^] 157 $9D

30 $1E ^ ^ 158 $9E

31 $1F ^ _ 159 $9F

64 $40 @ 192 $C0

65 $41 A 193 $C1

66 $42 B 194 $C2

67 $43 C 195 $C3

68 $44 D 196 $C4

69 $45 E 197 $C5

70 $46 F 198 $C6

71 $47 G 199 $C7

72 $48 H 200 $C8

73 $49 I 201 $C9

74 $4A J 202 $CA

75 $4B K 203 $CB

76 $4C L 204 $CC

77 $4D M 205 $CD

78 $4E N 206 $CE

79 $4F O 207 $CF

80 $50 P 208 $D0

81 $51 Q 209 $D1

82 $52 R 210 $D2

83 $53 S 211 $D3

84 $54 T 212 $D4

85 $55 U 213 $D5

86 $56 V 214 $D6

87 $57 W 215 $D7

88 $58 X 216 $D8

89 $59 Y 217 $D9

90 $5A Z 218 $DA

91 $5B [219 $DB

92 $5C \ 220 $DC

93 $5D] 221 $DD

94 $5E ^ 222 $DE

95 $5F _ 223 $DF

96 $60 ‘ 224 $E0

97 $61 a 225 $E1

98 $62 b 226 $E2

99 $63 c 227 $E3

100 $64 d 228 $E4

101 $65 e 229 $E5

102 $66 f 230 $E6

103 $67 g 231 $E7

104 $68 h 232 $E8

105 $69 i 233 $E9

106 $6A j 234 $EA

107 $6B k 235 $EB

108 $6C l 236 $EC

109 $6D m 237 $ED

110 $6E n 238 $EE

111 $6F o 239 $EF

112 $70 p 240 $F0

113 $71 q 241 $F1

114 $72 r 242 $F2

115 $73 s 243 $F3

116 $74 t 244 $F4

117 $75 u 245 $F5

118 $76 v 246 $F6

119 $77 w 247 $F7

120 $78 x 248 $F8

121 $79 y 249 $F9

122 $7A z 250 $FA

123 $7B { 251 $FB

124 $7C | 252 $FC

125 $7D } 253 $FD

126 $7E ~ 254 $FE

127 $7F DEL 255 $FF

Low HighLow HighLow HighLow High

Low HighLow HighLow HighLow High

54

55

ProDOS File Types

APPENDIX B

Type Hex Dec Description

UNK $00 0 Unknown
BAD $01 1 Bad Blocks
PCD $02 2 Apple /// Pascal Code
PTX $03 3 Apple /// Pascal Text
TXT $04 4 ASCII Text
PDA $05 5 Apple /// Pascal Data
BIN $06 6 General Binary
FNT $07 7 Apple /// Font
FOT $08 8 Graphics
BA3 $09 9 Apple /// BASIC Program
DA3 $0A 10 Apple /// BASIC Data
WPF $0B 11 Word Processor
SOS $0C 12 Apple /// SOS System
DIR $0F 15 Folder
RPD $10 16 Apple /// RPS Data
RPI $11 17 Apple /// RPS Index
AFD $12 18 Apple /// AppleFile Discard
AFM $13 19 Apple /// AppleFile Model
AFR $14 20 Apple /// AppleFile Report Format
SCL $15 21 Apple /// Screen Library
PFS $16 22 PFS Document
ADB $19 25 AppleWorks Data Base
AWP $1A 26 AppleWorks Word Processor
ASP $1B 27 AppleWorks Spread Sheet
TDM $20 32 Desktop Manager Document
8SC $29 42 Apple II Source Code
8OB $2A 43 Apple II Object Code
8IC $2B 44 Apple II Interpreted Code
8LD $2C 45 Apple II Language Data
P8C $2D 46 ProDOS 8 Code Module
FTD $42 66 File Type Names
GWP $50 80 Apple IIGS Word Processor
GSS $51 81 Apple IIGS Spread Sheet
GDB $52 82 Apple IIGS Data Base
DRW $53 83 Drawing
GDP $54 84 Desktop Publishing
HMD $55 85 Hypermedia
EDU $56 86 Educational Data
STN $57 87 Stationery
HLP $58 88 Help
COM $59 89 Communications
CFG $5A 90 Configuration
ANM $5B 91 Animation
MUM $5C 92 Multimedia
ENT $5D 93 Entertainment
DVU $5E 94 Development Utility

Continued . . .

56

B: PRODOS FILE TYPES

Type Hex Dec Description

BIO $6B 107 PC Transporter BIOS
TDR $6D 109 PC Transporter Driver
PRE $6E 110 PC Transporter Pre-Boot
HDV $6F 111 PC Transporter Volume
WP $A0 160 WordPerfect Document
GSB $AB 171 Apple IIGS BASIC Program
TDF $AC 172 Apple IIGS BASIC TDF
BDF $AD 173 Apple IIGS BASIC Data
SRC $B0 176 Apple IIGS Source
OBJ $B1 177 Apple IIGS Object
LIB $B2 178 Apple IIGS Library
S16 $B3 179 GS/OS Application
RTL $B4 180 GS/OS Run-time Library
EXE $B5 181 GS/OS Shell Application
PIF $B6 182 Permanent Initialization
TIF $B7 183 Temporary Initialization
NDA $B8 184 New Desk Accessory
CDA $B9 185 Classic Desk Accessory
TOL $BA 186 Tool
DRV $BB 187 Device Driver
LDF $BC 188 Load File
FST $BD 189 GS/OS File System Translater
DOC $BF 191 GS/OS Document
PNT $C0 192 Packed Super Hi-Res Picture
PIC $C1 193 Super Hi-Res Picture
ANI $C2 194 Animation
PAL $C3 195 Palette
OOG $C5 197 Object Oriented Graphics
SCR $C6 198 Script
CDV $C7 199 Control Panel
FON $C8 200 Font
FND $C9 201 Finder Data
ICN $CA 202 Icons
MUS $D5 213 Music Sequence
INS $D6 214 Instrument
MDI $D7 215 MIDI
SND $D8 216 Sampled Sound
DBM $DB 219 Relational Data Base File
LBR $E0 224 Archival Library
ATK $E2 226 AppleTalk Data
R16 $EE 238 EDASM 816 Relocatable File
PAS $EF 239 Pascal Area
CMD $F0 240 BASIC Command
LNK $F8 248 EDASM Linker
OS $F9 249 GS/OS System File
INT $FA 250 Integer BASIC Program
IVR $FB 251 Integer BASIC Variables
BAS $FC 252 Applesoft BASIC Program
VAR $FD 253 Applesoft BASIC Variables
REL $FE 254 Relocatable Code
SYS $FF 255 ProDOS 8 System Application

ProDOS File Types (Continued)

57

Error Codes

0 NEXT Without FOR: a NEXT was encountered which had no matching FOR.
2 Range Error: an invalid argument value was specified.
3 No Device Connected: the given slot has no disk drive installed.
4 Write Protected Disk: unable save data unless write-enabled.
5 End of Data: an attempt was made to read data past the end of a file.
6 Path Not Found: the path to a filename was not found.
7 File Not Found: the specified file was not found.
8 I/O Error: the drive went offline or the disk has a media defect.
9 Disk Full: no room exists on the disk storing more data.

10 File Locked: the file is protected against modification or removal.
11 Invalid Option: an option not allowed for a certain command was used.
12 No Buffers Available: not enough memory for further disk functions.
13 File Type Mismatch: an invalid attempt was made to access a special file.
14 Program Too Large: you've written a FAT and SLOPPY program.
15 Not Direct Command: command was issued from immediate mode.
16 Syntax Error: a filename is illegal or a program statement misspelled.
17 Directory Full: the root volume contains too many filenames.
18 File Not Open: an attempt was made to read or write from an closed file.
19 Duplicate File Name: a RENAME or CREATE used on an existing filename.
20 File Busy: an attempt to re-OPEN or modify an OPEN file's name was made.
21 File Still Open: upon entering immediate mode, a file was found OPEN.
22 RETURN Without GOSUB: a RETURN with no matching GOSUB.
42 Out of Data: an attempt was made to READ past the last DATA item.
53 Illegal Quantity: an out-of-range value was used with a certain command.
69 Overflow: you used an awfully BIG or amazingly SMALL number.
77 Out of Memory: program code and variables have used up all free memory.
90 Undef'd Statement: a line number which does not exist was referenced.

107 Bad Subscript: an array subscript is larger than the given DIMension.
120 Redim'd Array: an attempt was made to reDIMension an existing array.
133 Division by Zero: division by zero is undefined (remember your algebra?)
163 Type Mismatch: a numeric or string value was used incorrectly.
176 String Too Long: the given string was larger than was allowed.
191 Formula Too Complex: go easy on the machine, Einstein.
224 Undef'd Function: reference to an undefined FuNction was made.
254 Reenter: user input was not of the type or format required.
255 Control-C Interrupt: control -C was pressed.

APPENDIX CAPPENDIX B

58

59

APPENDIX D

Licensing

As stated on the inside cover of this manual, this is a copyrighted
software product. It may not be distributed in any way without
permission of the Morgan Davis Group. To obtain authorization
to include Morgan Davis Group software with your commercial
products, write or call and request a Universal Software Licens-
ing Agreement. Be sure to include the title of the Morgan Davis
Group software you wish to license:

http://www.morgandavis.net

60

61

BASIC Syntax
Throughout this manual some abbreviations are used to
clarify special syntaxes or conditions for command usage.
This appendix quickly explains what they mean and how
they’ re used.

strexp A string is defined as a group of letters, numbers, symbols, or
control codes. A string expression, or strexp as used in this
manual, is any combination of strings and their various forms in
BASIC. Examples of string expressions:

X$
" Hel l o, Wor l d. "
" t hi s" + " t hat "
CHR$(4) + " OPEN" + FI LE$
CHR$(ASC(MI D$(Q$, I , 1)) - 2) + " yuck! "

strvar With some ampersand commands that return string information,
a string variable, strvar, is required. When a strvar is called for,
a string expression is not allowed. Examples of string variables:

X$
NAME$(7)

boolexp A Boolean expression, boolexp, is any logical operation that
results in a TRUE or FALSE numeric value. This includes
numeric or string operations used conditionally. In BASIC, a
TRUE value is anything other than zero (usually one), while
FALSE is always zero. Some examples:

" A" = B$
" A" < " B" OR " B" < " C"
((I - J) OR Q) AND C < (D + 33 * (NOT X))

APPENDIX E

62

numexp A numeric expression, numexp, is any combination of numbers,
numeric variables, or arithmetic functions that result in a
numeric value. Examples:

X
2 + 2
ASC(MI D$(B$, 5, 1)) + 64 * (C / 2)
PI - I NT(LOG(X) / SI N(Y) * Y * 20))

numvar A numeric variable, numvar, is used when a command returns a
numeric value. Examples:

X
Q2%
J(3 + I)

Optional
Arguments

Some commands accept optional parameters, shown within []
brackets in this manual. Do not include the brackets when you
enter the commands into BASIC.

BASIC SYNTAX

63

INDEX

Index

H

header
fields 16
version 16, 18, 29

I

ID number 9, 12
IMC 19

updating pointers 29
immediate mode table 17, 18
immediate reference 17, 18
index number 9, 12
intermodule communication. See

IMC
interface files 28

L

licensing 59

A

absolute reference 29
ampersand

command table 16, 17
AmperWorks 31

command summary 32
loading 31

APW 28
ASCII chart 53
assembly language 7, 15, 29

B

boolexp 61

E

error codes 57

F

file type 11, 55
function

OMM_C2PSTR 23, 27
OMM_COUNT 23, 27
OMM_FREE 23, 25
OMM_GETID 23, 24, 27
OMM_GETINFO 23, 28
OMM_GETSTR 23, 27
OMM_PADDEC 23, 27
OMM_PUTSTR 23, 26
OMM_PUTWORD 23, 26
OMM_XOAMP 23, 25

64

M

memory 7
auxiliary memory 7
internal buffers 28
removing modules 12

Merlin 28
message

MSG_AMPR 20
MSG_BORN 20, 22, 27
MSG_DIED 20, 22, 27
MSG_IDLE 20, 23
MSG_INFO 20, 23
MSG_INIT 20
MSG_KILL 20, 22
MSG_QUIT 20
MSG_REL1 20, 21, 29
MSG_REL2 20, 21, 29
MSG_USER 20, 21

messages 19, 20
module

address 9
building a 15
data section 18
format of a 15
header 16
IMC handler 19
information 8, 12, 13
length 9
loading 8
memory usage 7
removing 12

N

numexp 62
numvar 62

O

OMM
code relocator 17, 18, 29
Commands

LOAD CALL 14
LOAD FRE 10, 12
LOAD GET 10, 11
LOAD NOTRACE 10, 13
LOAD PEEK 10, 13
LOAD PRINT 10, 12
LOAD TRACE 10, 13

features 15
OMM.Loader 8

opcode usage 29
BRK 29
immediate mode reference 29

ORCA/M 28

S

strexp 61
strvar 61

V

version numbers 9

INDEX

65

NOTES

66

NOTES

67

www.morgandavis.net
 Morgan Davis Group

BASIC Memory Management Solution

How did we take the headache
 out of enhancing BASIC?

 We used our brains!

If you’ve ever tried to improve Applesoft BASIC, the OMM is

for you! The OMM eliminates memory conflicts and gives

you added power! Use your favorite assembler to easily

create relocatable modules. Let the OMM do the brain work!

Accellerates Applesoft

Intermodule Communication

Efficiently manages memory

Includes AmperWorks™

Sample programs

Supports all assemblers

