
             st a     pr mt bl
             l dy     #Ser Wr i t eChar
             j sr      Por t Tool
             br a     t er m_r ead

t er m_cmd     cmp     #' @' +128- 64
             bne     t er m_qui t

             not      byt e, debugMode
             br a     t er m_r ead

t er m_no_DCD  l da     #0
t er m_qui t     st a     l ocal Echo
             l dy     #CTHi deCur sor
             j sr      Consol eTool
             j sr      endl i ne
             j sr      chkcom
             l da     l ocal Echo
             br a     t er m_cl ose

updat eTer m   l dy     #Ser ReadChar
             j sr      Por t Tool
             l dy     updat eCycl e

ModemWorks
T e c h n i c a l   R e f e r e n c e

 Morgan Davis Group



2

Copyright © 1992 MORGAN DAVIS GROUP.  ALL RIGHTS RESERVED.

HTTP://WWW.MORGANDAVIS.NET

NO PART OF THIS PUBLICATION MAY BE REPRODUCED, STORED IN A
RETRIEVAL SYSTEM, OR TRANSMITTED, IN ANY FORM OR BY ANY

MEANS, ELECTRONIC, MECHANICAL, PHOTOCOPYING, RECORDING OR

OTHERWISE, WITHOUT THE PRIOR WRITTEN PERMISSION OF THE

AUTHOR.  NO PATENT LIABILITY IS ASSUMED WITH RESPECT TO THE

USE OF THE INFORMATION CONTAINED HEREIN.  WHILE EVERY

PRECAUTION HAS BEEN TAKEN IN THE PREPARATION OF THIS

PRODUCT, THE AUTHOR ASSUMES NO RESPONSIBILITY FOR ERRORS OR

OMISSIONS.

THE PRODUCT NAMES MENTIONED IN THIS MANUAL ARE THE

TRADEMARKS OR REGISTERED TRADEMARKS OF THEIR MANUFACTUR-
ERS.

PRODOS AND PRODOS BASIC ARE COPYRIGHTED PROGRAMS OF

APPLE COMPUTER, INC. LICENSED TO THE MORGAN DAVIS GROUP

TO DISTRIBUTE FOR USE ONLY IN COMBINATION WITH THIS PRODUCT.
APPLE SOFTWARE SHALL NOT BE COPIED ONTO ANOTHER DISKETTE

(EXCEPT FOR ARCHIVE PURPOSES) OR INTO MEMORY UNLESS AS PART

OF EXECUTION OF THIS PRODUCT.  WHEN THIS PRODUCT HAS

COMPLETED EXECUTION, APPLE SOFTWARE SHALL NOT BE USED BY

ANY OTHER PROGRAM.

APPLE COMPUTER, INC. MAKES NO WARRANTIES, EITHER EXPRESS OR

IMPLIED REGARDING THE ENCLOSED SOFTWARE PACKAGE, ITS

MERCHANTABILITY OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
THE EXCLUSION OF IMPLIED WARRANTIES IS NOT PERMITTED IN SOME

STATES.  THE ABOVE EXCLUSION MAY NOT APPLY TO YOU.  THIS

WARRANTY PROVIDES YOU WITH SPECIFIC LEGAL RIGHTS.  THERE

MAY BE OTHER RIGHTS THAT YOU MAY HAVE THAT VARY FROM

STATE TO STATE.

FIRST PRINTING — MAY 1992 — U.S.A.

Printed on recycled paper.



3

Contents

Chapter One: Getting Started

What You Should Know ........................................................ 5

Past, Present, Future .............................................................. 6

Chapter Two: Interfaces

Passing & Receiving .............................................................. 7

TimeTool ................................................................................. 8

PortTool ................................................................................ 10

ModemTool ......................................................................... 16

ConsoleTool ......................................................................... 21

PrinterTool ............................................................................. 25

SendTool ............................................................................... 27

ReceiveTool ......................................................................... 28

Chapter Three: Sample Program

HexTerm ............................................................................... 29

Appendix A: ASCII Chart ................................................... 35

Appendix B: ProDOS File Types ......................................... 37

Appendix C: Error Codes................................................... 39



4



5

Getting Started
ModemWorks lets you develop high performance data commu-
nications software in BASIC as well as in assembly language.
Although ModemWorks comes with everything needed to create
communications programs on your computer, its modular design
offers “plug and play” expandability, allowing you to add
additional features.  This ModemWorks Technical Reference
shows you how to access ModemWorks’  modules from assem-
bly language programs.  It also describes the interfaces to the
various modules so that you can integrate new modules with
those that already exist.

This chapter introduces you to ModemWorks and its technical
origin.  It begins by describing the things you need to know
before developing your own modules.

Before embarking on the process of creating a custom
ModemWorks module, you should possess the following:

• An assembly language development system
• Knowledge of 65C02 programming
• An understanding of basic data communications concepts
• The Object Module Manager (OMM) and manual
• Familiarity with the OMM, module format, IMC, etc.

This manual assumes that you possess these qualifications.  As
the title of this manual suggests, the information presented is
quite technical.  It is not for the casual programmer.

Required reading:  Chapter 3, ModemWorks Modules, in the
ModemWorks BASIC Communications Toolbox manual.

What You
Should
Know

CHAPTER ONE



6

Historically, ModemWorks did not adopt an open architecture
until the 3.0 version was released in 1992.  In this industry,
things change at breakneck speed.  What may push the limits of
technology today will amuse us by its prehistoric nature tomor-
row.  ModemWorks may have been on the cutting edge in 1984,
when 1200 bps modems were amazing, but it was doomed by a
closed architecture.  The modem industry soon outpaced
computers and software, even ModemWorks.

Unless your Apple IIGS is equipped with an accellerator,
current technology already exceeds the ability of the computer
to keep up with high-speed communications.  If the hardware
can’ t handle it, software doesn’ t stand a chance.

In 1990, work began on rewriting ModemWorks from scratch.
It was to be based on an open architecture.  The major parts of
ModemWorks would be serviced by interchangeable modules.
To software that called upon these modules, they would all seem
to operate identically, even though they may integrate with a
myriad of devices.  With a standard interface accessible to
software, programs could finally get work done without being
concerned with hardware peculiarities.

During the development process, the Object Module Manager
was born.  The OMM is the heart of ModemWorks.  It allows
ModemWorks’  modules to communicate among each other,
sending commands and making requests.  It makes the inte-
grated, open structure successful.

Let us not believe that even with this new architecture that we
will enjoy the cutting edge forever.  We may not be
communicating using modems in the next eight years.
Undoubtedly, new technology will make modems obsolete.
Perhaps we’ ll connect via high-speed links over direct
connections handled for us by the phone (or cable TV?)
company.  No more Hayes-style AT commands.  No more
voice-grade lines.  We’ ll all just “ network”  with each other
like so many computerized television sets.

See you on channel 6502.

Past,
Present,
Future

1: GETTING STARTED



7

Interfaces
This chapter presents the interface to each kind of module that
comprises ModemWorks.  The interface consists of intermodule-
communication command numbers that are passed through the
OMM’s message passing feature.  Each command is explained,
including the parameters it accepts as input or output.

Module can exchange information in a variety of ways.  Values
may be passed in a parameter table.  The CPU’s registers (A, X,
and Y) may be used.  Even the processor’s flags (zero, carry,
overflow) can be used to return information.

In the pages that follow, these symbols describe both input and
output parameters:

prmtbl Memory location $E0
A A-register (accumulator)
X X-register
Y Y-register
C Carry flag
N Negative flag
Z Zero flag
V Overflow flag

ModemWorks commands use a six-byte area of memory at
location $E0 for passing parameters.  This location is called
prmtbl.  Ranges of bytes in the parameter table are identified by
this notation: prmtbl[0..3].  This is shorthand for giving the
locations prmtbl, prmtbl+1, prmtbl+2, and prmtbl+3.  Another
example: prmtbl[2].  This denotes the byte at prmtbl+2.

Passing &
Receiving

CHAPTER TWO



8

TimeTool A Time Tool, such as Time and TimeGS, provide a timing
system for software.  Timing is required by every module in
ModemWorks, so this is the most important kind of module in
the system.  Note that many of these functions require that they
be called at least once every 1/60 second in order to provide
fairly accurate timing.

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* * *
* * * Ti meTool . equ
* * *

TT_I D equ $7474 ; Ti me Tool  ( " t t " )  I D

Ti cker equ 0

Call Ticker to find out when the leading edge of the next tick
begins.  This lets you do your own timing in 1/60 second
increments.
Input: None
Output: C=1 if new tick cycle starting

Get Ti cks equ 1

GetTicks calls Ticker for you, incrementing a tick counter.  The
16-bit value of the counter is returned in prmtbl[0..1].

Count Down equ 2

Use CountDown after setting a count with SetCounter.  Repeat-
edly call it while doing some other task.
Input: None
Output: Z=1 when counter reaches zero

Wai t Ti cks equ 3

2: INTERFACES



9

Call WaitTicks to suspend execution for an interval.  If provided,
the TimeTool will execute a procedure once every tick cycle.
The procedure must preserve all registers.  It can force the
WaitTicks call to quit early by setting the carry flag before
returning.  A null procedure argument indicates no procedure.
Input: prmtbl[0..1]=tick count, prmtbl[2..3]=procedure
Output: C=0 when WaitTicks times out.

C=1 when WaitTicks is cancelled.

Wai t Seconds equ 4

WaitSeconds is identical to WaitTicks, only it suspends execu-
tion in one second increments rather than ticks.  It also will
execute a procedure, if provided, every 1/60 second.
Input: prmtbl[0..1]=tick count, prmtbl[2..3]=procedure
Output: C=0 when WaitSeconds times out.

C=1 when WaitSeconds is cancelled.

Set Count er equ 5

Use SetCounter before calling CountDown.
Input: prmtbl[0..1]=tick count
Output: None

Get Ti meSt r equ 6

GetTimeStr returns a descriptor for a 22-character string
containing time information.  The descriptor is at lowtr ($9B).
Input: None
Output: lowtr[0]=length, lowtr[1..2]=address of string in

this format: "Fri,  6 Mar  92 12:54:36"

2: INTERFACES



10

Fast CPU equ 7
Sl owCPU equ 8

These functions set the Apple IIGS CPU speed to Fast or Normal
(Slow) speed.
Input: None
Output: None

A Port Tool is responsible for low-level communications I/O
with a serial device.

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* * *
* * * Por t Tool . equ
* * *

PT_I D equ $7470 ; Por t  Tool  ( " pt " )  I D

Ser Open equ 0

SerOpen opens the serial device specified by its slot number for
a communications session.
Input: prmtbl[0]=slot of serial device
Output: None

Ser Cl ose equ 1

Use SerClose when all operations with the serial device opened
with SerOpen are completed.  Failure to make this call may
leave interrupt servicing enabled and can crash the system.
Input: None
Output: None

PortTool

2: INTERFACES



11

Ser Reset equ 2

SerReset reinitializes the serial device previously opened with
SerOpen.
Input: None
Output: None

Ser SendBr eak equ 3

SerSendBreak sends a 230ms break signal to the serial device.
Input: None
Output: None

Ser Set DTR equ 4
Ser Cl ear DTR equ 5

These functions turn on (SerSetDTR) and turn off
(SerClearDTR) the Data Terminal Ready signal.
Input: None
Output: None

Ser Set Por t Bi t s equ 6

Use SerSetPortBits to adjust data, stop, and parity bits.  Values
are: Data / Stop Bits Parity Bits

0 = 8 / 1 0 = None
1 = 7 / 1 1 = Odd
2 = 6 / 1 2 = None
3 = 5 / 1 3 = Even
4 = 8 / 2 4 = Mark
5 = 7 / 2 5 = Space
6 = 6 / 2
7 = 5 / 2

Input: prmtbl[0]=data/stop bits, prmtbl[1]=parity bits
Output: None

2: INTERFACES



12

Ser Set Speed equ 7
Ser Get Speed equ 8

These functions set or get the serial port speed.  Speed values
are:

0 = Default 8 = 1200
1 = 50 9 = 1800
2 = 75 10 = 2400
3 = 110 11 = 3600
4 = 134.5 12 = 4800
5 = 150 13 = 7200
6 = 300 14 = 9600
7 = 600 15 = 19200

Input: prmtbl[0]=speed (for Set)
Output: A-reg=speed (for Get)

Ser Get DCD equ 9

SerGetDCD returns the status of the Data Carrier Detect signal.
Input: None
Output: C=0 no carrier, C=1 carrier present

Ser Wr i t eChar equ 10

Writes a character to the serial device.
Input: prmtbl[0]=character
Output: None

Ser Wr i t eBuf f er equ 11

SerWriteBuffer writes from zero to $FFFF characters to the
serial device.
Input: prmtbl[0..1]=count, prmtbl[2..3]=data buffer address
Output: None

2: INTERFACES



13

Ser ReadChar equ 12

Reads a character from the serial device.
Input: None
Output: C=0 no character

C=1 character read, A=character

Ser ReadBuf f er equ 13

SerReadBuffer reads zero to $FFFF characters and places them
into a buffer at the address specified.  Note that SerReadBuffer
will not return until the requested character count is met.
Input: prmtbl[0..1]=count, prmtbl[2..3]=data buffer address
Output: None

Ser Fl ushI nQ equ 14

Flushes any buffered input.
Input: None
Output: None

Ser Get I nQ equ 15

Returns the count of characters in the serial buffer waiting to be
read.
Input: None
Output: prmtbl[0..1]=count

Ser Get I nBuf equ 16
Ser Set I nBuf equ 17

SerGetInBuf returns the address and size of the serial input
buffer.  SerSetInBuf instructs the serial tool to use the specified
buffer.
I/O: prmtbl[0..3]=input buffer address

prmtbl[4..5]=size of input buffer

2: INTERFACES



14

Ser Set Fl ow equ 18

Adjusts data flow control characteristics for the serial device.
Values for the type of flow control are:

0 = Reserved
1 = None
2 = XON / XOFF
3 = RTS/CTS hardware handshaking
4 = RTS input hanshaking
5 = CTS output hanshaking

Input: prmtbl[0]=flow control type
Output: None

Ser AddCompVec equ 19
Ser Del CompVec equ 20
Ser Cl ear CompVec equ 21

These functions manage the serial input interrupt completion
feature.  Use SerAddCompVec to assign a completion vector for
the procedure address you specify.  Use SerDelCompVec to
remove completion vectoring for an address.  Use
SerClearCompVec to remove all interrupt completion vector
handlers.
Input: prmtbl[0..1]=address of completion handler
Output: None

Ser AddSear ch equ 22
Ser Del Sear ch equ 23
Ser Cl ear Sear ch equ 26

These functions add or remove C-style (null terminated) strings
for handshaking by the SerGetSearch or SerShowSearch
functions.  SerClearSearch removes all strings from the search
manager.
Input: prmtbl[0..1]=address of string
Output: None

2: INTERFACES



15

Ser Get Sear ch equ 24
Ser ShowSear ch equ 25

These functions read serial input and matches it against any
strings added to the serial search manager by SerAddSearch.
Both functions operate similarly, except SerShowSearch sends
all characters processed to a Console tool, if available.  Searches
require repeated calls to these functions as they only read and
process one character per call.  If a string is found, its address is
returned.  If no string is found, $0000 is returned.
Input: None
Output: prmtbl[0..1]=address of matched string (or $0000

if none found).

Ser Get Ti medByt e equ 27

Use SerGetTimedByte to suspend execution for an interval (in
ticks) while waiting for serial input.
Input: prmtbl[0..1]=ticks
Output: C=0, timed out—no input (if V=1, lost carrier)

C=1, A=character read

Ser Out Buf f er i ng equ 28

Use this function to enable or disable serial output buffering
(IIGS serial port only).  With output buffering enabled, calls to
SerWriteChar or SerWriteBuffer return immediately.  With
output buffering disabled, these calls do not return until the last
character is transmitted.
Input: prmtbl[0]=1 enables output buffering

prmtbl[0]=0 disables output buffering (default)
Output: None

2: INTERFACES



16

Ser Set DCD equ 29

This function controls Data Carrier Detect spoofing.  If enabled,
all calls to SerGetDCD return a TRUE status.  If disabled,
SerGetDCD returns the actual DCD status.
Input: prmtbl[0]=1 enables DCD spoofing

prmtbl[0]=0 disables DCD spoofing (default)
Output: None

A Modem Tool is responsible for interfacing with a modem
device.

************************************************************
* * *
* * * ModemTool . equ
* * *

MT_I D equ $746d ; Modem Tool  ( ' mt ' )  I D

I ni t Modem equ 0

InitModem establishes a new modem session, setting the modem
for proper operation with the Modem tool.
Input: None
Output: A=0 if initialization failed

A=1 if initialization was successful

ModemExi t equ 1

ModemExit terminates a modem session, resetting the modem to
its preconfigured settings.
Input: None
Output: None

ModemTool

2: INTERFACES



17

I sOnl i ne equ 2

IsOnline returns the online status of the modem.  This status is
regulated by the use of other Modem Tool functions.  For
example, if HandleConnect is successful, the Modem Tool
asserts an online status.  Using HangUp disables the online
status.  If the Modem Tool thinks it is offline, IsOnline returns a
zero result.  However, if thinks it could be online, it determines
the online state by calling SerGetDCD.  This handles the
situation where carrier is lost during a connection.
Input: None
Output: A=0 offline

A=1 online

HasMNP equ 3

HasMNP returns the modem's error correction capability status.
Input: None
Output: A=0 no error correction ability

A=1 can employ error correction

Di al Number equ 4

DialNumber dials a phone number.  If the phone number begins
with the letters AT the number string is sent directly to the
modem.  This allows the caller to specify additional modem
control commands before dialing.  If the number does not begin
with AT, the Modem tool sends AT followed by the modem’s
commands for adjusting error correction (if available), the
commands for dialing with pulses or Touch-Tones™ (as speci-
fied), and finally the phone number string of characters.
Input: prmtbl[0]= length of phone number string

prmtbl[1..2]= address of phone number string
prmtbl[3]=Touch-Tones(1) or pulses(0)

Output: None

2: INTERFACES



18

Set Busy equ 5

SetBusy adjusts the off-hook state of the modem.
Input: prmtbl[0]=0 go onhook (not busy)

prmtbl[0]=1 go offhook (busy)
Output: None

Handl eConnect equ 6

HandleConnect is used after answering or dialing to watch for a
connection (or other event, such as a busy signal).  It suspends
execution for an interval (in seconds) or until the modem returns
a connection result.  Pressing any key will cancel the attempt.
Connection results are:

0 = connection established
1 = cancelled by a key press
2 = no connection
3 = busy
4 = no dial tone
5 = no answer
6 = voice detected

Input: prmtbl[0..1]=seconds
Output: A=result code

Answer Li ne equ 7
Or i gAnsLi ne equ 11

These functions tell the modem to pickup the phone line and
send an Answer or Originate carrier tone.
Input: None
Output: None

HangUp equ 8

HangUp attempts to terminate the online connection.
Input: None
Output: None

2: INTERFACES



19

I sRi ngi ng equ 9

Returns the ringing status of the phone line.
Input: None
Output: C=0 no ring

C=1 ring detected

Set MNP equ 10

Enables or disables the modem’s error correction feature for
subsequent use when dialing or answering.
Input: prmtbl[0]=0 disable error correction (any non-zero

value enables error correction)
Output: None

Reset Modem equ 12

Reinitializes the modem without changing its operating speed.
Input: None
Output: A=0 reset failed

A=1 reset was successful

Set Speaker equ 13

Specifies the modem’s speaker mode during connections and
online sessions.  Values for the mode are:

0 = speaker always off
1 = speaker on until carrier detected
2 = speaker always on
3 = speaker off when carrier detected and while dialing

Input: prmtbl[0]=speaker mode
Output: None

2: INTERFACES



20

Get Mode equ 14

Returns the modem’s mode. Mode values are:
0 = answer mode
1 = originate mode
2 = quiet mode (offhook, no connection)

Input: None
Output: prmtbl[0]=mode

ModemType equ 15

Returns the modem’s type. Returned values are:
0 = no modem
1 = internal
2 = external

Input: None
Output: prmtbl[0]=type

Connect Speed equ 16

Returns the modem’s last connection speed. This is the speed at
which the modem reported a connection, and is not necessarily
the speed between the computer’s port and the modem.  See
SerSetSpeed for a list of speed values.
Input: None
Output: prmtbl[0]=speed

Set Modem equ 17

Passes the address of a modem capability (modemcap)
structure.  A modemcap defines various characteristics for the
modem.
Input: prmtbl[0..1]=address of modemcap
Output: None

2: INTERFACES



21

Set ModemSpeed equ 18

Sets the operating speed for the modem.  Applications that
work with a Modem Tool should use this function rather than
going directly to a Port Tool to change the speed.  See
SerSetSpeed for speed values.
Input: prmtbl[0]=speed
Output: None

A Console Tool manages input and output with the console—the
keyboard and video screen.  It is also responsible for processing
terminal emulation requests.

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* * *
* * * Consol eTool . equ
* * *

CT_I D equ $7463 ; Consol e Tool  ( " ct " ) I D

CTOpen equ 0

CTOpen opens a session with the video display and keyboard.
The caller passes the desired width (in columns) of the
display screen (either 40 or 80).
Input: prmtbl[0]=width of display
Output: None

CTCl ose equ 1

Closes a session previously opened with CTOpen.
Input: None
Output: None

ConsoleTool

2: INTERFACES



22

CTReset equ 2

Resets the console.
Input: None
Output: None

CTCont r ol equ 3

CTControl performs a display function such as moving the
cursor, turning on inverse video, and clearing sections of the
screen.  CTControl returns a buffer of control codes to be sent to
a remote device for full terminal control of both the local and
remote consoles.  It is up to the application to send this buffer to
a Port tool.  Control codes are:

1 = gotoxy 14 = scroll screen up
2 = clear screen 15 = scroll screen down
3 = clear to end of screen 16 = cursor up
4 = clear to end of line 17 = cursor down
5 = insert line 18 = cursor right
6 = delete line 19 = cursor left
7 = insert space at cursor 20 = soft tab
8 = delete char at cursor 21 = hard tab
9 = home cursor 22 = clear line
10 = ring bell 23 = insert mode
11 = carriage return 24 = end insert mode
12 = inverse 25 = underline mode
13 = normal 26 = end underline mode

27 = MouseText on
28 = MouseText off

Input: prmtbl[0] = control code
prmtbl[1..2] = control arguments (GotoXY)

Output: prmtbl[0..1] = count of characters in buffer
prmtbl[2..3] = address of remote console control code

buffer.

2: INTERFACES



23

CTSt at us equ 4

CTStatus returns a flag describing a remote console’s abilities to
perform the specified control code.  See CTControl for a list of
control codes.
Input: prmtbl[0] = control code
Output: C=0 not serviceable

C=1 remote console can handle the control code

CTGet XY equ 5

CTGetXY returns the cursor’s current coordinates.
Input: None
Output: X=horizontal column

A=vertical row

CTWr i t eChar equ 6

CTWriteChar writes a character to the console.
Input: prmtbl[0]=character
Output: None

CTWr i t eBuf f er equ 7

CTWriteBuffer writes a buffer of characters to the console.
Input: prmtbl[0..1]=count

prmtbl[2..3]=address of character buffer
Output: None

CTTest Char equ 8

CTTestChar tests the keyboard to see if a character is waiting to
be read with CTReadChar.
Input: None
Output: C=1 if a character is waiting to be read

2: INTERFACES



24

CTReadChar equ 9

CTReadChar reads the keyboard for a character.  If one is
available, it clears the keyboard.  Note: This function does not
wait indefinitely for a character—it returns immediately.  It is
different from CTTestChar in that it clears the keyboard of the
character just read.
Input: None
Output: C=1 if a character is waiting to be read

A=character (with bit 7 set)

CTFl ushI nQ equ 10

This function flushes the keyboard of any characters waiting to
be read.
Input: None
Output: None

CTShowCur sor equ 11
CTHi deCur sor equ 12

These functions show or hide the cursor character.  Applications
that allow the user to input information must manage the display
of the cursor.
Input: None
Output: None

CTSet Bel l At t r equ 13

CTSetBellAttr sets the pitch and duration of the bell character.
Input: prmtbl[0]=pitch

prmtbl[1]=duration
Output: None

2: INTERFACES



25

CTSet Ter mcap equ 14

CTSetTermcap specifies the address of a terminal capability
(termcap) structure.  This structure defines the characteristics of
a remote terminal for emulation.
Input: prmtbl[0..1] = address of termcap structure
Output: None

CTGot oXY equ 15

This function places the cursor at the specified coordinates on
the display.
Input: prmtbl[0]=horizontal column

prmtbl[1]=vertical row
Output: None

Printer Tools handle output with a printer device.  These tools
provide their own port driver code, as well as support for specific
kinds of printers they may drive.

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* * *
* * * Pr i nt er Tool . equ
* * *

LT_I D equ $746C ; Pr i nt er  Tool  ( " l t " )
I D

LTOpen equ 0

LTOpen initializes a session with a printer located in the slot
specified.
Input: prmtbl[0]=slot of printer interface
Output: None

PrinterTool

2: INTERFACES



26

LTCl ose equ 1

LTClose ends a session with a printer previously opened with
LTOpen.
Input: None
Output: None

LTReset equ 2

LTReset resets the printer previously opened with LTOpen.
Input: None
Output: None

LTCont r ol equ 3

This function performs various printer effects such as bold
facing, and underlining, etc.  Control codes have not yet been
assigned.  This function currently does nothing.
Input: prmtbl[0]=control code

prmtbl[1..n]=control code arguments
Output: None

LTWr i t eChar equ 5

LTWriteChar writes a character to the printer.
Input: prmtbl[0]=character
Output: None

LTWr i t eBuf f er equ 6

LTWriteBuffer writes a buffer of characters to the printer.
Input: prmtbl[0..1]=count

prmtbl[2..3]=address of character buffer
Output: None

2: INTERFACES



27

SendTool Send Tools perform file transfers using various communications
protocols.

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* * *
* * * SendTool . equ
* * *

ST_I D equ $7473 ; Send Tool  ( " st " )  I D

STTr ansf er equ 0

Sends a file using protocol.  The address of the filename to
transfer is stored in a pointer in the ProDOS BASIC global page
at vpath1 ($BE6C).  A string descriptor for a set of option
characters is stored at lowtr ($9B).  A null filename signifies the
end of a batch transfer.  If a disk error occurs, this function sets
the carry flag and returns the error code in the A register.  If
carry is clear upon return, location a1 ($3C) contains a 16-bit
transfer result code.  A result of zero indicates a successful
transfer—no errors.
Input: vpath1[0..1]=address of filename

lowtr[0]=option string length
lowtr[1..2]=address of option string

Output: If C=0 then a1[0..1]=transfer result
If C=1 then A=ProDOS BASIC error code

2: INTERFACES



28

Receive Tools perform file transfers using various communica-
tions protocols.

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* * *
* * * Recei veTool . equ
* * *

RT_I D equ $7472 ; Recei ve Tool  ( " r t " ) I D

RTTr ansf er equ 0

Receives a file using protocol.  The address of a filename in
which to receive data is stored in a pointer in the ProDOS
BASIC global page at vpath1 ($BE6C).  A string descriptor for a
set of option characters is stored at lowtr ($9B).  If a disk error
occurs, this function sets the carry flag and returns the error code
in the A register.  If carry is clear upon return, location a1 ($3C)
contains a 16-bit transfer result code.  A result of zero indicates a
successful transfer—no errors.  If the Receive Tool can ascertain
the name of the file being sent, it returns it into a buffer pointed
to by vpath2 ($BE6E).  Return a null filename to signify the end
of a batch transfer.
Input: vpath1[0..1]=address of filename

lowtr[0]=option string length
lowtr[1..2]=address of option string

Output: If C=0 then a1[0..1]=transfer result
If C=1 then A=ProDOS BASIC error code
vpath2[0..1]=address of returned filename

ReceiveTool

2: INTERFACES



29

Sample Program

HexTerm

CHAPTER THREE

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* * *
* * * hext er m. ai i Hex Out put  Ter mi nal  Tool
* * * Copyr i ght  ( C)  1992 Mor gan Davi s
* * * MPW I I GS Assembl er
* * *

MACHI NE M65C02
l onga of f
l ongi of f
case on

I NCLUDE ' OMM. equ'
I NCLUDE ' Por t Tool . equ'

a1 equ $3c
pr mt bl equ $e0
chr got equ $b7

ch80 equ $057b

kbd equ $c000
st r b equ $c010
cmdkey equ $c061

chkcom equ $debe
get byt e equ $e6f 8
bs equ $f c10
up equ $f c1a
l f equ $f c66
pr byt e equ $f dda
cout equ $f ded

This chapter presents the source code for a custom Terminal
Tool module called HexTerm.  When HexTerm is used in place
of the Terminal module, incoming data is displayed with
hexadecimal values shown under each character.  This makes
debugging serial connections quite easy.



30

t er m PROC
hVERS DC. W$0000 ; OMM header
hI D DC. W' t m'
hSI ZE DC. WEND- START
hORG DC. WSTART
hAMPC DC. Wamper c
hKI ND DC. W$0000
hRSRV1 DC. W$0000
hRSRV2 DC. W$0000

START cmp #MSG_AMPR ; amper sand cal l ?
beq doampr ; yes
cmp #MSG_DI ED ; modul e deat h?
beq dodeat h
cmp #MSG_BORN ; modul e bi r t h?
beq dobi r t h
cmp #MSG_I NFO ; get  i nf o st r i ng?
bne ct r t s

doi nf o l da a_i nf o
st a a1
l da a_i nf o+1
st a a1+1

ct r t s r t s

cal l pt l dx pt i ndex ; f unct i on i n Y
beq ct r t s ; oops no t ool !

dommvec j mp OMMVEC ; cal l  t he Por t  Tool

dobi r t h
dodeat h

l da #<PT_I D ; get  por t  t ool  i ndex
st a a1
l da #>PT_I D
st a a1+1
j sr ommi d
st x pt i ndex ; save i t
r t s

ommi d l dx #OMM_I D
l dy #OMM_GETI D
j mp OMMVEC

3: SAMPLE PROGRAM



31

* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - *
*  Amper sand Command Di spat cher  *
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - *

doampr j sr chr got ; any ar gument s?
beq t er mr ead ; no

j sr get byt e ; get  f l ag i n X

* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - *
*       Ter mi nal  Mode Loop      *
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - *

t er mr ead j sr updat eTer m ; updat e di spl ay
l dy #Ser Get DCD ; check DCD
j sr cal l pt
bcc t mnocar ; none,  so qui t

keyr ead l da kbd ; check keyboar d
bpl t er mr ead

bi t cmdkey ; check Command key
st a st r b ; cl ear  keyboar d
bmi t mq ; got  a command

and #$7F ; send key t o por t
st a pr mt bl
l dy #Ser Wr i t eChar
j sr cal l pt
br a t er mr ead ; l oop back f or  mor e

3: SAMPLE PROGRAM



32

* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - *
*       Exi t  Ter mi nal  Mode      *
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - *

t mnocar l da #0
t mq st a r esul t ; save exi t  code

j sr chr got ; r et ur n i t ?
beq el r et ; no

j sr chkcom ; ski p comma
l da r esul t
st a a1
st z a1+1
l dy #OMM_PUTWORD
l dx #OMM_I D
j mp OMMVEC ; r et ur n r esul t  code

* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - *
*         Updat e Di spl ay        *
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - *

updat eTer m l dy #Ser ReadChar ; ser i al  i nput ?
j sr cal l pt
bcs t er mout ; yes

el r et r t s

t er mout pha
or a #$80 ; make i t  pr i nt abl e
cmp #$A0 ; check f or  cont r ol
bcs t ocout

and #$7F ; i nver t  cont r ol s
or a #$40

t ocout j sr cout ; pr i nt  char act er
j sr bs ; back up
j sr l f ; go down
pl a ; get  r eal  byt e
j sr pr byt e ; pr i nt  i t  i n hex
l da ch80 ; check f or  wr ap
beq el r et

j mp up ; no wr ap,  so go up

3: SAMPLE PROGRAM



33

* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - *
*          Dat a Sect i on         *
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - *

dc. b $00 ; st ar t  of  i mmed
t abl e
a_i nf o dc. w i nf o

dc. w $0000 ; st ar t  of  dat a

amper c dc. b ' TERM' , 0 ; &TERM i nvokes t hi s
dc. b - 1

msb on
i nf o dc. b ' 18- May- 92 HexTer m 1. 0'

msb of f

pt i ndex ds. b 1 ; i ndex t o Por t  Tool
r esul t ds. b 1 ; exi t  code

END
ENDP

END

3: SAMPLE PROGRAM



34

3: SAMPLE PROGRAM



35

APPENDIX A

ASCII Chart

32 $20 SPC 160 $A0

33 $21 ! 161 $A1

34 $22 " 162 $A2

35 $23 # 163 $A3

36 $24 $ 164 $A4

37 $25 % 165 $A5

38 $26 & 166 $A6

39 $27 ' 167 $A7

40 $28 ( 168 $A8

41 $29 ) 169 $A9

42 $2A * 170 $AA

43 $2B + 171 $AB

44 $2C , 172 $AC

45 $2D - 173 $AD

46 $2E . 174 $AE

47 $2F / 175 $AF

48 $30 0 176 $B0

49 $31 1 177 $B1

50 $32 2 178 $B2

51 $33 3 179 $B3

52 $34 4 180 $B4

53 $35 5 181 $B5

54 $36 6 182 $B6

55 $37 7 183 $B7

56 $38 8 184 $B8

57 $39 9 185 $B9

58 $3A : 186 $BA

59 $3B ; 187 $BB

60 $3C < 188 $BC

61 $3D = 189 $BD

62 $3E > 190 $BE

63 $3F ? 191 $BF

0 $00 ^ @ 128 $80

1 $01 ^ A 129 $81

2 $02 ^ B 130 $82

3 $03 ^ C 131 $83

4 $04 ^ D 132 $84

5 $05 ^ E 133 $85

6 $06 ^ F 134 $86

7 $07 ^ G 135 $87

8 $08 ^ H 136 $88

9 $09 ^ I 137 $89

10 $0A ^ J 138 $8A

11 $0B ^ K 139 $8B

12 $0C ^ L 140 $8C

13 $0D ^ M 141 $8D

14 $0E ^ N 142 $8E

15 $0F ^ O 143 $8F

16 $10 ^ P 144 $90

17 $11 ^ Q 145 $91

18 $12 ^ R 146 $92

19 $13 ^ S 147 $93

20 $14 ^ T 148 $94

21 $15 ^ U 149 $95

22 $16 ^ V 150 $96

23 $17 ^ W 151 $97

24 $18 ^ X 152 $98

25 $19 ^ Y 153 $99

26 $1A ^ Z 154 $9A

27 $1B ^ [ 155 $9B

28 $1C ^ \ 156 $9C

29 $1D ^ ] 157 $9D

30 $1E ^ ^ 158 $9E

31 $1F ^ _ 159 $9F

64 $40 @ 192 $C0

65 $41 A 193 $C1

66 $42 B 194 $C2

67 $43 C 195 $C3

68 $44 D 196 $C4

69 $45 E 197 $C5

70 $46 F 198 $C6

71 $47 G 199 $C7

72 $48 H 200 $C8

73 $49 I 201 $C9

74 $4A J 202 $CA

75 $4B K 203 $CB

76 $4C L 204 $CC

77 $4D M 205 $CD

78 $4E N 206 $CE

79 $4F O 207 $CF

80 $50 P 208 $D0

81 $51 Q 209 $D1

82 $52 R 210 $D2

83 $53 S 211 $D3

84 $54 T 212 $D4

85 $55 U 213 $D5

86 $56 V 214 $D6

87 $57 W 215 $D7

88 $58 X 216 $D8

89 $59 Y 217 $D9

90 $5A Z 218 $DA

91 $5B [ 219 $DB

92 $5C \ 220 $DC

93 $5D ] 221 $DD

94 $5E ^ 222 $DE

95 $5F _ 223 $DF

96 $60 ‘ 224 $E0

97 $61 a 225 $E1

98 $62 b 226 $E2

99 $63 c 227 $E3

100 $64 d 228 $E4

101 $65 e 229 $E5

102 $66 f 230 $E6

103 $67 g 231 $E7

104 $68 h 232 $E8

105 $69 i 233 $E9

106 $6A j 234 $EA

107 $6B k 235 $EB

108 $6C l 236 $EC

109 $6D m 237 $ED

110 $6E n 238 $EE

111 $6F o 239 $EF

112 $70 p 240 $F0

113 $71 q 241 $F1

114 $72 r 242 $F2

115 $73 s 243 $F3

116 $74 t 244 $F4

117 $75 u 245 $F5

118 $76 v 246 $F6

119 $77 w 247 $F7

120 $78 x 248 $F8

121 $79 y 249 $F9

122 $7A z 250 $FA

123 $7B { 251 $FB

124 $7C | 252 $FC

125 $7D } 253 $FD

126 $7E ~ 254 $FE

127 $7F DEL 255 $FF

Low HighLow HighLow HighLow High

Low HighLow HighLow HighLow High



36



37

ProDOS File Types

APPENDIX B

Type Hex Dec Description

UNK $00 0 Unknown
BAD $01 1 Bad Blocks
PCD $02 2 Apple /// Pascal Code
PTX $03 3 Apple /// Pascal Text
TXT $04 4 ASCII Text
PDA $05 5 Apple /// Pascal Data
BIN $06 6 General Binary
FNT $07 7 Apple /// Font
FOT $08 8 Graphics
BA3 $09 9 Apple /// BASIC Program
DA3 $0A 10 Apple /// BASIC Data
WPF $0B 11 Word Processor
SOS $0C 12 Apple /// SOS System
DIR $0F 15 Folder
RPD $10 16 Apple /// RPS Data
RPI $11 17 Apple /// RPS Index
AFD $12 18 Apple /// AppleFile Discard
AFM $13 19 Apple /// AppleFile Model
AFR $14 20 Apple /// AppleFile Report Format
SCL $15 21 Apple /// Screen Library
PFS $16 22 PFS Document
ADB $19 25 AppleWorks Data Base
AWP $1A 26 AppleWorks Word Processor
ASP $1B 27 AppleWorks Spread Sheet
TDM $20 32 Desktop Manager Document
8SC $29 42 Apple II Source Code
8OB $2A 43 Apple II Object Code
8IC $2B 44 Apple II Interpreted Code
8LD $2C 45 Apple II Language Data
P8C $2D 46 ProDOS 8 Code Module
FTD $42 66 File Type Names
GWP $50 80 Apple IIGS Word Processor
GSS $51 81 Apple IIGS Spread Sheet
GDB $52 82 Apple IIGS Data Base
DRW $53 83 Drawing
GDP $54 84 Desktop Publishing
HMD $55 85 Hypermedia
EDU $56 86 Educational Data
STN $57 87 Stationery
HLP $58 88 Help
COM $59 89 Communications
CFG $5A 90 Configuration
ANM $5B 91 Animation
MUM $5C 92 Multimedia
ENT $5D 93 Entertainment
DVU $5E 94 Development Utility

Continued . . .



38

B: PRODOS FILE TYPES

Type Hex Dec Description

BIO $6B 107 PC Transporter BIOS
TDR $6D 109 PC Transporter Driver
PRE $6E 110 PC Transporter Pre-Boot
HDV $6F 111 PC Transporter Volume
WP $A0 160 WordPerfect Document
GSB $AB 171 Apple IIGS BASIC Program
TDF $AC 172 Apple IIGS BASIC TDF
BDF $AD 173 Apple IIGS BASIC Data
SRC $B0 176 Apple IIGS Source
OBJ $B1 177 Apple IIGS Object
LIB $B2 178 Apple IIGS Library
S16 $B3 179 GS/OS Application
RTL $B4 180 GS/OS Run-time Library
EXE $B5 181 GS/OS Shell Application
PIF $B6 182 Permanent Initialization
TIF $B7 183 Temporary Initialization
NDA $B8 184 New Desk Accessory
CDA $B9 185 Classic Desk Accessory
TOL $BA 186 Tool
DRV $BB 187 Device Driver
LDF $BC 188 Load File
FST $BD 189 GS/OS File System Translater
DOC $BF 191 GS/OS Document
PNT $C0 192 Packed Super Hi-Res Picture
PIC $C1 193 Super Hi-Res Picture
ANI $C2 194 Animation
PAL $C3 195 Palette
OOG $C5 197 Object Oriented Graphics
SCR $C6 198 Script
CDV $C7 199 Control Panel
FON $C8 200 Font
FND $C9 201 Finder Data
ICN $CA 202 Icons
MUS $D5 213 Music Sequence
INS $D6 214 Instrument
MDI $D7 215 MIDI
SND $D8 216 Sampled Sound
DBM $DB 219 Relational Data Base File
LBR $E0 224 Archival Library
ATK $E2 226 AppleTalk Data
R16 $EE 238 EDASM 816 Relocatable File
PAS $EF 239 Pascal Area
CMD $F0 240 BASIC Command
LNK $F8 248 EDASM Linker
OS $F9 249 GS/OS System File
INT $FA 250 Integer BASIC Program
IVR $FB 251 Integer BASIC Variables
BAS $FC 252 Applesoft BASIC Program
VAR $FD 253 Applesoft BASIC Variables
REL $FE 254 Relocatable Code
SYS $FF 255 ProDOS 8 System Application

ProDOS File Types (Continued)



39

Error Codes

0 NEXT Without FOR: a NEXT was encountered which had no matching FOR.
2 Range Error: an invalid argument value was specified.
3 No Device Connected: the given slot has no disk drive installed.
4 Write Protected Disk: unable save data unless write-enabled.
5 End of Data: an attempt was made to read data past the end of a file.
6 Path Not Found: the path to a filename was not found.
7 File Not Found: the specified file was not found.
8 I/O Error: the drive went offline or the disk has a media defect.
9 Disk Full: no room exists on the disk storing more data.

10 File Locked: the file is protected against modification or removal.
11 Invalid Option: an option not allowed for a certain command was used.
12 No Buffers Available: not enough memory for further disk functions.
13 File Type Mismatch: an invalid attempt was made to access a special file.
14 Program Too Large: you've written a FAT and SLOPPY program.
15 Not Direct Command: command was issued from immediate mode.
16 Syntax Error: a filename is illegal or a program statement misspelled.
17 Directory Full: the root volume contains too many filenames.
18 File Not Open: an attempt was made to read or write from an closed file.
19 Duplicate File Name: a RENAME or CREATE used on an existing filename.
20 File Busy: an attempt to re-OPEN or modify an OPEN file's name was made.
21 File Still Open: upon entering immediate mode, a file was found OPEN.
22 RETURN Without GOSUB: a RETURN with no matching GOSUB.
42 Out of Data: an attempt was made to READ past the last DATA item.
53 Illegal Quantity: an out-of-range value was used with a certain command.
69 Overflow: you used an awfully BIG or amazingly SMALL number.
77 Out of Memory: program code and variables have used up all free memory.
90 Undef'd Statement: a line number which does not exist was referenced.

107 Bad Subscript: an array subscript is larger than the given DIMension.
120 Redim'd Array: an attempt was made to reDIMension an existing array.
133 Division by Zero: division by zero is undefined (remember your algebra?)
163 Type Mismatch: a numeric or string value was used incorrectly.
176 String Too Long: the given string was larger than was allowed.
191 Formula Too Complex: go easy on the machine, Einstein.
224 Undef'd Function: reference to an undefined FuNction was made.
254 Reenter: user input was not of the type or format required.
255 Control-C Interrupt: control -C was pressed.

APPENDIX CAPPENDIX B



www.morgandavis.net

 Morgan Davis Group


