
A
 Morgan Davis Group

RADE
REA L-TIME APPL ESOFT DEBUGGING ENV I RONMENT

2

Copyright © 1992 Morgan Davis Group

All Rights Reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted,
in any form or by any means, electronic, mechanical,
photocopying, recording or otherwise, without prior
written permission of the author. No patent liability is
assumed with respect to the use of the information
contained herein. WHILE EVERY PRECAUTION HAS
BEEN TAKEN IN THE PREPARATION OF THIS
PRODUCT, MORGAN DAVIS GROUP ASSUMES NO
RESPONSIBILITY FOR ERRORS OR OMISSIONS.

The product names mentioned in this manual are the
trademarks or registered trademarks of their manufac-
turers.

ProDOS and ProDOS BASIC are copyrighted programs
of Apple Computer, Inc. licensed to the Morgan Davis
Group to distribute for use only in combination with
this product. Apple software shall not be copied onto
another diskette (except for archive purposes) or into
memory unless as part of execution of this product.
When this product has completed execution, Apple
software shall not be used by any other program.

Apple Computer, Inc. makes no warranties, either
express or implied regarding the enclosed software
package, its merchantability or its fitness for any
particular purpose. The exclusion of implied warran-
ties is not permitted in some states. The above exclu-
sion may not apply to you. This warranty provides you
with specific legal rights. There may be other rights
that you may have that vary from state to state.

First printing — October 1992 — U.S.A.
Printed on

recycled paper.

3

Contents

Introduction
What Is RADE? ... 5

Notation ... 5

Credits .. 6

Chapter One: Getting Started
What You Should Know.. 7

How RADE Works ... 7

Installing RADE ... 8

Activating RADE.. 9

Entering Commands .. 10

Online Help .. 11

Debugging Concepts .. 12

Chapter Two: RADE Commands
Symbols & Syntax .. 13

Breakpoints .. 14

History ... 15

Environment Files .. 17

Program Flow .. 17

Variables .. 18

Other Commands .. 20

4

Chapter Three: A Debugging Session
About FIX.ME ... 23

Running FIX.ME .. 24

Stepping .. 24

Listing Lines .. 25

Exiting ... 25

Disabling ONERR ... 26

Using Breakpoints .. 26

Resuming Execution ... 27

Showing Variables .. 27

Switching Displays ... 28

Watching Variables .. 28

Tracing ... 29

Invoking RADE with & ... 29

Viewing the History ... 30

Clearing Breakpoints .. 30

Inspecting Variables ... 31

Modifying Variables.. 32

Final Fix ... 32

Appendix A: RADE Command Chart33

Appendix B: ASCII Chart 35

Appendix C: ProDOS File Types 37

Appendix D: Error Codes 39

Index ... 41

5

Introduction

RADE is the Real-time Applesoft Debugging Environ-
ment. RADE helps you explore the guts of a BASIC
program, its variables, program flow, and other runtime
characteristics without disturbing the program’s
memory or screen display. Without RADE, the debug-
ging process, an experience that accompanies the
development of any program, is a frustrating, time
consuming, and arduous task. With RADE and its
powerful features, like stepping, tracing, and
breakpoints, debugging is quick and painless.

Throughout this manual the following symbols are
used to denote keys on your keyboard:

Reset Delete
Option Up arrow
Open-apple Down arrow
Control Left arrow
Escape Right arrow
Return Tab
Space Shift

Hyphenated key references, such as - , tell you to
press and hold the first key while typing the second.

This manual displays commands in uppercase, but
neither RADE nor BASIC are case sensitive.

What Is
RADE?

Notation

6

Credits Software Russell E. Gibson

Manual Morgan Davis

Publishing Morgan Davis Group
10079 Nuerto Lane
Rancho San Diego
CA 91977-7132 USA

Support +1 619 670 0563
+1 619 670 9643 FAX
+1 619 670 5379 BBS

Testers Amrit Chauhan
Jon Thomason
Morgan Davis

RADE was initially conceived, designed, and devel-

oped during the summer of 1992. Daily electronic

mail (via the ProLine network) and phone calls

between San Diego (Morgan) and Hillsboro (Russ)

kept the project rolling. Russ and Morgan met for

the first time, face to face, only after RADE and the

manual were completed.

7

What You
Should
Know

CHAPTER ONE

Getting Started
This chapter gives a brief overview of RADE, how it
works, and how to install and activate it. Sit in front of
your computer while following along.

Since RADE is a BASIC programmer’s utility, knowl-
edge of Applesoft and ProDOS BASIC (BASIC.System)
is assumed.

RADE runs only on the Apple IIGS. However, the
Applesoft BASIC programs you develop and test with
RADE can be used on any Apple II series computer,
provided they do not do anything IIGS-specific.

RADE does not modify or change your programs in any
way. Simply use RADE to find bugs in a program, then
repair them as you normally would.

NOTE: RADE must be installed before any other BASIC
extensions, or any programs that modify HIMEM.

RADE is a binary program (BIN) file that you install in
memory by running it from Applesoft BASIC. Once
installed, RADE remains quiet and unobtrusive until
you need it.

To activate RADE, press - - . This se-
quence tells RADE that you want to begin debug-
ging. When Applesoft attempts to execute the next
statement, RADE halts the program and saves the
screen display. It then switches to its own display
where you can do your debugging.

How RADE
Works

8

1: GETTING STARTED

You can examine the contents of variables, step
through a few statements, set some breakpoints, or
turn on statement tracing (these features are dis-
cussed later). When you’re done, RADE restores the
program’s display and it continues where it left off.

If your program requires changes, you can make
them in Applesoft’s immediate mode and continue
testing. When your program is bug-free, you can
remove RADE from memory by unloading it.

As with all commercial software, you should make a
working backup of your RADE disk. Do that now.

If you have a hard disk, copy RADE to the directory
where you normally keep your BASIC programming
utilities.

To quickly install RADE from the working copy of
the RADE disk, insert the disk into a drive, then
perform one of the following steps:

Restart the computer to boot the RADE disk, or
Launch the Startup file on the RADE disk

To install RADE from the copy on your hard disk:

Launch BASIC.System (if not already there)
Run RADE using the appropriate pathname:

] - / HD/ DEV. TOOLS/ RADE

NOTE: RADE uses auxiliary memory, occupied by the /RAM
volume. If there are files on /RAM, RADE asks if you really
want to install it, thus removing any files stored there. If you
must use a RAM disk, the Apple IIGS can set aside memory to
support /RAM5, which doesn’ t conflict with RADE .

Installing
RADE

9

Activating
RADE

1: GETTING STARTED

When installed successfully, RADE displays:

RADE 1. 00 I ns t al l ed

Now, work in Applesoft as you normally would. RADE
is completely dormant and won’t interfere with your
programs. It occupies only 768 bytes of main memory,
so you may not even notice its impact on free memory.

RADE is usually activated by pressing - -
while a program is running. This is the Apple IIGS

keyboard flush sequence, used to remove any key-
strokes from the built-in keyboard buffer. It also
instructs RADE to begin intercepting Applesoft program
statements as they’re encountered.

If you press - - while in an input mode (e.g.,
immediate mode or during an INPUT or GET), RADE
won’t be activated until the input is complete. RADE’s
debugging display appears as soon as the next
Applesoft statement is reached.

You can also invoke RADE by using Applesoft’s
ampersand (&) command, commonly used by
Applesoft enhancements. Since RADE is always
installed before other BASIC extensions, RADE is able
to trap unknown ampersand commands.

While in immediate mode, enter the ampersand (&)
command now to activate RADE:

] &

The screen is cleared and RADE displays its debugging
screen, as shown on the next page.

10

Entering
Commands

1: GETTING STARTED

The first time RADE presents itself, it displays its title,
version number, author, and copyright information.

At the top of the screen is RADE’s status bar. The
status indicates the amount of memory available in
the debugging history, the number of breakpoints
and watch variables defined, the size of the program
in memory, the current line and statement number,
and the history recording mode. These features will
be discussed in detail later.

RADE is controlled by entering commands on the
command line, which is preceded by a colon (:)
prompt. Commands are letters or words, and are
sometimes followed by arguments. Commands and
arguments are separated by spaces.

A command is performed when you press . Some
commands can be entered with the key (is not
required).

 Avai l Hi s t . BPs WVs Pr og. Si z e Li ne St at ement Hi s t or y
 65331 ($FF33) 0 0 2 ($0002) 380 2 On

The Real - t i me Appl es of t Debuggi ng Env i r onment v1. 00
Wr i t t en by Rus sel l E. Gi bson

Copyr i ght (C) 1992 Mor gan Dav i s Gr oup

 380/ 2> REM Wel c ome t o RADE!
:

RADE’s initial
display screen.

11

1: GETTING STARTED

Enter the following command for practice:

D

The D (display) command shows the program’s screen.
Typing any key switches back to RADE’s debugging
screen.

For practice with keys, hold down and press D
at the same time. -D is a shortcut for entering D
followed by . Any key, including -D, restores
RADE’s screen.

Enter the question mark (?) to display RADE’s com-
mand summary:

?

Commands you can enter in the command line are
listed under the Command heading.

Letters in the ð column indicate commands entered in
combination with the key.

Online
Help

 Avai l Hi s t . BPs WVs Pr og. Si z e Li ne St at ement Hi s t or y
 64426 ($FBBA) 0 0 945 ($03B1) 380 2 On

The Real - t i me Appl es of t Debuggi ng Env i r onment v1. 00
Wr i t t en by Rus sel l E. Gi bson

Copyr i ght (C) 1992 Mor gan Dav i s Gr oup

 380/ 2> REM Wel c ome t o RADE!
: D
: D
: ?
 Command ð Desc r i pt i on Command ð Desc r i pt i on
 - - - - - - - - - - - - - - - - - - - - - -
-
 BC Cl ear a br eakpoi nt L L Li s t pr ogr am or l i ne
 BP Set a br eakpoi nt MTR M Ent er sys t em moni t or
 BU Updat e br eak poi nt s R R Resume pr ogr am
 D D Show cur r ent di spl ay S S St ep
 EL Load env i r onment UNLOAD U Unl oad RADE
 ES Sav e env i r onment VC Cl ear wat ch var i abl e
 H Hi s t or y r ecor di ng VM Modi f y var i abl e
 HC Cl ear hi s t or y VS Show a var i abl e
 HOME H Cl ear debugger sc r een VW Def i ne wat c h var i abl e
 HS Sav e hi s t or y f i l e X X Qui t t o BASI C pr ompt
:

Built-in help
summary.

12

1: GETTING STARTED

To get a brief description of a command, type ? fol-
lowed by the command (remember to include a space
between the command and its argument):

? VW

All of RADE’s commands are discussed in detail in the
next chapter.

To use RADE effectively you should be familiar with
these standard debugging concepts:

Stepping. This is perhaps the most useful feature of
a debugger because it allows you to pause the
execution of a program at each instruction. The
debugger freezes the program before each statement
is performed so that you can examine variables and
program flow.

Tracing. Tracing a program’s execution gives you a
running history of program flow. Unlike stepping,
each statement executed is recorded with no
interruption of the program. Later, you can examine
the history to study program flow.

Breakpoints. If you know the general area in a
program where debugging (e.g. stepping) should
begin, you can set a breakpoint there. When
execution reaches the breakpoint’s location, the
debugger kicks in automatically.

Interruption. RADE can be activated manually
during the course of a running program by pressing

- - or placing a lone ampersand (&) in
your program. This interrupts the program as if a
breakpoint where set at that point in the program.

Debugging
Concepts

13

Symbols
& Syntax

CHAPTER TWO

RADE Commands
This chapter describes RADE’s debugging commands,
their options and syntaxes. Commands are presented
in groups that relate to a particular function.

Arguments are separated from commands and
other arguments by one space character.

Optional arguments are shown between square
brackets, [like this]. Don’t include the brackets.

Choices are separated by the vertical bar character
(|). For example, AA | BB means you can enter AA
or BB as an argument.

line denotes a line number (e.g. 2800).

stmt denotes a statement number. Since more than
one statement can be given per line, RADE allows
you to refer to a particular statement by its position
on a line.

line/stmt is used frequently when both a line and
stmt number are required. Always remember to
include the slash with this format (e.g. 2800/2).

pathname is a legal ProDOS pathname, a sequence
of volume, subdirectory, and file names that refer-
ence a file on a ProDOS disk.

variable is any legal variable name in Applesoft.

14

2: RADE COMMANDS

If you know the general area in a program where
debugging (e.g. stepping) should begin, you can set a
breakpoint. When execution reaches the breakpoint’s
location, the debugger kicks in automatically.

 BC [l i ne/ s t mt]

Clears a breakpoint. Without arguments, BC clears
all breakpoints.

A breakpoint can be specified by a line/stmt refer-
ence:

BC 2800/ 2

It is possible to clear all breakpoints on a given line,
by using = or * for stmt.

 BP [l i ne/ s t mt]

(-) Sets or lists breakpoints. BP by itself dis-
plays all breakpoints. To set a breakpoint, include a
line/stmt reference:

BP 2800/ 2

This triggers RADE when the 2nd statement in line
2800 is reached.

 BU

Breakpoint update. When RADE detects that the
size of the current program has changed, it automati-
cally updates its pointers so that they reference the
right line and statement locations.

Breakpoints

15

2: RADE COMMANDS

BU is diligent about doing this without intervention,
however it is included for the rare occasion when
modications do not affect the program’s length. This
might occur when loading a new program with the
same length as the previous program. Invalid
breakpoints aren’t dangerous — they just keep
RADE from stopping on breakpoints correctly.

RADE maintains a large area of memory where it
stores all debugging commands and their results
(except for work you do in the system monitor via
RADE’s MTR command). This area is known as the
debugging history buffer, which can be reviewed at
any time. RADE records information until the buffer
fills (about 64K of text)—then it stops. It is up to
you to clear the filled buffer (perhaps saving it first)
so that RADE can record new information.

Reviews the debugging history. Use the and
keys to scroll through the history, one line at a time.
To browse through the history one screen at a time,
hold while pressing the or key. ESC
returns to RADE’s command line.

The history can be viewed while entering a com-
mand without disturbing the command line’s con-
tents. For example, if you are setting a breakpoint,
but forgot the statement number, you might scroll
through the history to find it. When done scrolling
through the history, RADE allows you to complete
the command line.

History

16

 H + | - | ON | OFF

History recording. Recording is enabled when RADE
is installed, but can be turned off by giving the - or
OFF arguments, and subsequently resumed with the
+ or ON arguments.

NOTE: If the history buffer fills, RADE turns off history
recording automatically. Use the H command to re-enable
history recording after clearing the buffer with HC.

 HC

Clears the history buffer. Use HC when the history
has filled and is no longer able to record informa-
tion, or when you no longer need history buffer’s
contents.

In addition to clearing the history, HC also clears
RADE’s debugging display.

 HS pat hname

Saves history. The current history buffer is saved to
file specified by pathname. If pathname refers to a
file that already exists, RADE asks if you want to
append to the file. If you don’t want to append,
RADE asks if you want to replace the file.

The file is stored in standard ASCII text format,
suitable for printing. RADE does not clear the
history after saving it.

2: RADE COMMANDS

17

RADE’s environment files are excellent for recording
debugging sessions for programs in development.
With the ability to set breakpoints and watch variables
for use with a particular program, it is convenient to
store these settings for easy recall. Environment files
record breakpoints, watch variables, history buffer, and
the history recording state.

 EL pat hname

Loads an environment file created by the ES command.

 ES pat hname

Saves the environment to a file. The environment can
be restored later using the EL command. It is suggested
that environment files possess the same name as the
program file with a .env suffix (e.g. ANIMALS.ENV).

RADE’s program flow features allow you to take a
snapshot of your program after each statement and
view the results. They also allow you to divert
program flow as if a GOTO were placed in your
program. You can even halt a program, exit to
Applesoft’s immediate mode, then continue again
where you left off.

 R [l i ne]

(-) Resume execution of the program. With-
out arguments, the original program’s display is
restored and program execution continues.

2: RADE COMMANDS

Environment
Files

Program
Flow

18

The line argument allows you to resume execution
at a particular line in the program, effectively per-
forming a GOTO to the line specified.

R 6502

This would resume program execution at line 6502.

 S [n]

(-) Steps through statements. After the state-
ment is executed, RADE activates itself prior to the
execution of the next statement. When stepping, the
current statement is displayed along with any vari-
ables being watched.

You can trace through several statments at once by
specifying n as the number of statements to step.

 X

(-) Exits RADE, stopping the BASIC program,
so that you access Applesoft’s immediate mode.

NOTE: Applesoft’s CONT command can resume the program
from the point where RADE’s X command interrupted it.

RADE includes a number of commands that make
inspecting variables a snap. You can instruct RADE to
display a particular set of variables and their values
each time RADE’s debugging screen is invoked (called
watch variables). You can view the contents of any
variable, list the names of variables that have been
defined, and even change their values.

2: RADE COMMANDS

Variables

19

 VC [var i abl e]

Clear watch variable. This removes a variable from
RADE’s variable watching list. If VC is entered by
itself, all watch variables are cleared.

 VM var i abl e val ue

Modify variable. This assigns a value to the speci-
fied variable which must exist in memory. The
value must be a string or numeric constant—no
variables or expressions are accepted. Examples:

VM A$ " Tes t "
VM X(4, 2) 5

For floating point variables, exponents are not
allowed, though simple decimal notation can be
used.

 VS [var i abl e]

Show variable. Displays the value of the specified
variable. Examples:

: VS A$
A$ = " Tes t "

: VS X(4, 2)
X() = 5

VS reports undefined variables (“does not exist”),
displaying zero for numeric variables and “” for
string variables.

Without arguments, VS lists the names of all vari-
ables that have been assigned values.

2: RADE COMMANDS

20

 VW [var i abl e]

(-V) Watch variable. Each time RADE is activated,
all variables being watched are automatically displayed.
Up to eight watch variables can be defined at one time.

Without arguments, VW displays all watch variables
and their contents.

NOTE: VW does not support array variables.

Miscellaneous RADE commands include the following:

 ? [command]

(-) Displays help. If a command argument is
specified, a brief description of that command is
presented. Cmd-/ (or ? with no arguments) displays
a summary of RADE’s commands.

 D

(-) Displays the current program screen as it
was just before entering RADE. Press any key to
return to RADE’s debugging display.

 HOME

(-) Clears the debugging screen. This com-
mand does not affect the debugging history.

2: RADE COMMANDS

Other
Commands

21

 L [.] | [[[l i ne] -] l i ne]

(-) List program lines. Without arguments, the
entire program is listed.

The period (.) signifies the current program line—
that is, the line currently interrupted by RADE.
When RADE is invoked from immediate mode, the
period lists the last line executed.

A range of lines may be specified. Use a starting
line, a dash, and optionally an ending line.

If the listing includes the current statement, an arrow
() is displayed. If a statement listed has a
breakpoint, a diamond () is shown with the
breakpoint’s index number.

Lines are displayed with each statement identified by
its statement number. Example:

: L 200

1 200/ 1> PRI NT " Tes t i ng"
200/ 2> X = 25
200/ 3> FOR I = 1 TO X

200/ 4> PRI NT I
200/ 5> NEXT

 MTR

(-) System monitor. Use - to return
to RADE when done.

2: RADE COMMANDS

22

2: RADE COMMANDS

 UNLOAD

(-) Removes RADE from memory. RADE
disconnects itself from the Apple IIGS keyboard flush
vector, restores the /RAM volume, and releases the
768 bytes of main memory it occupied.

If - is used, RADE asks if you really want to
unload it. If so, type .

NOTE: RADE automatically unloads itself when the ProDOS
BASIC BYE command is issued.

23

About
FIX.ME

CHAPTER THREE

A Debugging Session
This chapter walks you through a typical debugging
session using most of the commands described in the
previous chapter. The diskette comes with a program
named FIX.ME, riddled with bugs. Follow along to
repair FIX.ME while gaining hands-on experience with
RADE.

The FIX.ME program (when bug-free) turns on the
Apple’s high-resolution graphics display and draws
an interesting pattern, as shown below.

The program continues to cycle through random
displays, pausing briefly after each one, until you
press a key.

FIX.ME
(after you fix it).

Sampl e Pr ogr am

24

If RADE isn’t already in memory, restart the RADE
diskette and enter into Applesoft. Otherwise, make
sure the current prefix is set to the RADE disk.

Next, run the FIX.ME program:

] RUN FI X. ME

After loading, the screen immediately clears, then

Sampl e Pr ogr am Fi ni s hed

is printed. And you return to immediate mode. This
program is supposed to display a pretty graphic
design, but something is definitely not right. Even
worse, the program quit without doing a thing, and
didn’t even have the courtesy of displaying an error
message.

Use RADE to step through the program to help
locate and repair the mistakes that prevent FIX.ME
from running correctly.

First, invoke RADE by typing - - . Now,
RUN the program again by typing RUN. RADE
activates and shows the first line in the program:

100/ 1> ONERR GOTO 190

Step through the first statement using the -S keys.
This statement sets up error handling with line 190.
The next statement is shown:

110/ 1> HOME

Running
FIX.ME

3: A DEBUGGING SESSION

Stepping

25

Step again and the screen clears.
The next statement to execute is:

120/ 1> VTAB 25

Uh oh. Before you step again, notice the value
being used with VTAB. The Apple II display has
only 24 lines. Surely, that will cause an error. And
since error handling is turned on, the program is
going to transfer execution to the handler in line
190.

Use the L command to list a few lines starting with
190 so you can see what is happening when an error
occurs:

: L 190- 230
190/ 1> POKE 49168, 0
200/ 1> HOME
210/ 1> TEXT
220/ 1> PRI NT " Sampl e Pr ogr am

Fi ni shed"
230/ 1> END

That explains why the program just clears the
screen, prints a message, and quits without doing
much else. That VTAB statement needs to be fixed.

To quickly exit RADE and stop the program from
running, using the -X keys. Your screen shows:

BREAK I N 120
]

Now you can repair the bogus VTAB. In line 120,
change the VTAB 25 to VTAB 24.

3: A DEBUGGING SESSION

Exiting

Listing
Lines

26

While debugging with RADE, it is sometimes helpful to
turn off Applesoft’s ONERR handling, as illustrated by
the first bug in FIX.ME. Had Applesoft’s error handling
been turned off, the VTAB 25 would have generated an
error message and stopped the program instantly.

With this insight, insert a REM statement at the begin-
ning of line 100 to effectively disable ONERR handling.
You can always remove the REM to enable it later. (A
program can selectively shut off Applesoft’s error
handling by using POKE to store zero at location 216.)

RUN the program once more. This time the graphics
screen is obviously invoked, and the program appears
to be drawing some kind of design to the screen. But
another error is causing it to quit early:

?I LLEGAL QUANTI TY ERROR I N 320
]

(Your display may show that the error occurs in line
300. If that’s the case, substitute 300 for each reference
to line 320 throughout the remainder of this chapter.)

Now is a good time to set a breakpoint. Type -
- and then RUN the program again. When

RADE comes up, enter:

: BP 320/ 1

This places a breakpoint on the first statement in line
320. Notice how the status bar at the top of the screen
now shows 1 under the BPs heading. Each time
Applesoft attempts to execute line 320, RADE will be
invoked automatically.

Disabling
ONERR

Using
Breakpoints

3: A DEBUGGING SESSION

27

Resume program execution using -R. Almost
immediately, we’re back in RADE at line 320.

1 320/ 1> HPLOT X + 1, 0 TO
XCENTER, YCENTER TO
279 - X - 1, 191

Line 320 hasn’t executed yet, but we know that the
HPLOT command is getting upset about one of the
values being passed to it. (Hint: HPLOT allows
coordinate points to be used from 0,0 to 279,191.)

Inspect the values of the variables used in line 320 to
see if they’re in range:

: VS X
 X = 0
: VS XCENTER
 XC = 135. 819372
: VS YCENTER
 YC = 52. 6188322

The values shown on your screen for XCENTER and
YCENTER probably differ since the program gener-
ates these values randomly. In any case, the values
are within the range that HPLOT allows, so stepping
once ought to work without any trouble.

Type -S to step once. No errors? So far, so good.

Resuming
Execution

Showing
Variables

3: A DEBUGGING SESSION

28

Type -D to view the program’s display. The
screen shows two rays extending from a random
center point out to the edges of the graphics screen.
Press any key to return to RADE’s debugging dis-
play.

Apparently, the error doesn’t occur everytime, but
only when one of the variables is out of range. From
within RADE, look at the program listing to put the
error into context by typing -L. This lists the
entire program.

The listing indicates the current program line as
being 320. You can see that 320 is inside of a FOR-
NEXT loop that increments X.

Use the VW command to watch the variable X:

: VW X

Each time RADE comes up, it displays the current
line and the value in X.

Now use -R to resume execution through another
loop. RADE returns instantly because of the
breakpoint in line 320. Press -R a few more times.

It may take some time, and hundreds of -R keys,
until the error manifests itself again. Forunately,
there is an easier way to trace through the program
non-stop without any intervention on your part.

Don’t wear out your fingers now—read on.

Switching
Displays

3: A DEBUGGING SESSION

Watching
Variables

29

You know what the trouble is, but it takes time before
the bug bites again. The best thing to do in this case is
to allow RADE to rapidly step through each statement
on its own until the program bombs again. Enter the
following:

: H OFF

This turns off history recording because the next
step(s) will generate a lot of debugger output.

Next, enter:

: S 999

This tells RADE to perform 999 steps, a suffcient
number to speed your way to the error. At some point
the program will crash and you’ll be able to look at the
last line executed before the error occurred.

Eventually, the program does end up in immediate
mode with an ILLEGAL QUANTITY ERROR. Return
to RADE by entering an ampersand (&) by itself:

] &

The value of X is shown (since we’re watching it)
along with the last statement executed. Ah ha!
HPLOT’s horizontal coordinate in X is out of range!

 Before continuing, turn history recording back on:

: H ON

RADE will now continue to record your debugging
operations.

Tracing

Invoking
RADE with &

3: A DEBUGGING SESSION

30

Viewing
the History

Use to scroll backward through RADE’s history
and stop when you see the program listing gener-
ated with -L earlier.

Locate the FOR loop that begins in line 280. Notice
how it affects X by looping from 0 to 280! While the
graphics display has 280 horizontal pixels, the
ending value for the loop should be 280 minus SIZE,
the amount that X is incremented in each pass.

Press ESC to exit the history viewing mode. Then
use the R command to return to immediate mode.
Change line 280 to:

 280 FOR X = 0 TO 280 - SI ZE STEP SI ZE

This ensures that X stays within the horizontal pixel
boundary.

RUN the program again. Oops, we’re back in RADE
again at line 320 —that breakpoint is still set. Re-
move it with the BC command:

: BC 320/ 1

Now type -R to resume execution. The program
cycles through a few screens, drawing a design,
pausing for a moment, and starting a new screen.

Something still isn’t right. After the pause, you can
hear a faint click from the speaker. And, if left
running long enough, the program stops on its own.
(It is supposed to keep cycling until you press a key
to stop it—and that doesn’t appear to work either).

Clearing
Breakpoints

3: A DEBUGGING SESSION

31

Inspecting
Variables

This time, RUN the program first to allow the pro-
gram to define its variables.

Now type - - to break into RADE. To see
which variables are currently defined use VS:

: VS
Si mpl e var i abl es :

KE XC YC SI X

Ar r ay var i abl es :
None

You’re familiar with all the above except for KE
(KEY in the program listing). Take a look at KE
directly so you can discover its contents:

: VS KE
 KE = 49200

Location 49200 in peripheral memory corresponds to
the speaker location ($C030). Any access to that
location will click the speaker. List line 180:

180/ 1> I F PEEK (KEY) < 128 THEN 150

KEY is accessing the speaker when, presumably, it
should be referencing the keyboard input location
49152. This explains the clicks, and may also be the
reason why a keypress doesn’t halt the program.

NOTE: Applesoft stores only the first two letters of a variable
name in memory. Your program listings may use longer
names, but RADE will only see their first two letters.

3: A DEBUGGING SESSION

32

Modifying
Variables

For testing purposes, change the value in KEY to
49152 (the keyboard input location) instead of 49200
(the speaker location).

: VM KEY 49152

VM modifies the variable KEY (recognized as KE by
Applesoft) to contain 49152.

Resume execution again with -R. This time, the
clicking has gone away. And the program will run
forever until a key is pressed.

The program is still not completely right, because
the modification to KEY was made in memory only.
The program still assigns 49200 to KEY in line 135.
You’ll want to change it to:

135 KEY = 49152

Congratulations! With RADE, you’ve successfully
debugged FIX.ME.

(You can save the new program as MOIRE.)

3: A DEBUGGING SESSION

Final Fix

33

APPENDIX A

RADE Command
Chart

Command Key Description

History

? [command] -/ Help

BC [line / stmt] Clear breakpoint

BP [line / stmt] -B Set breakpoint

BU Update breakpoints

D -D Switch display modes

EL pathname Load environment

ES pathname Save environment

H + | - | ON | OFF History recording

HC Clear history

HOME -H Clear debugging display

HS pathname Save history

L [.] | [[[line] -] line] -L List program lines

MTR -M Enter system monitor

R [line] -R Resume program

S [n] -S Step through statement(s)

UNLOAD -U Unload and remove RADE

VC [variable] Clear a watch variable

VM variable value Modify a variable

VS [variable] Show variable(s)

VW [variable] -V Watch a variable

X -X Exit to immediate mode

34

35

APPENDIX B

ASCII Chart

32 $20 SPC 160 $A0

33 $21 ! 161 $A1

34 $22 " 162 $A2

35 $23 # 163 $A3

36 $24 $ 164 $A4

37 $25 % 165 $A5

38 $26 & 166 $A6

39 $27 ' 167 $A7

40 $28 (168 $A8

41 $29) 169 $A9

42 $2A * 170 $AA

43 $2B + 171 $AB

44 $2C , 172 $AC

45 $2D - 173 $AD

46 $2E . 174 $AE

47 $2F / 175 $AF

48 $30 0 176 $B0

49 $31 1 177 $B1

50 $32 2 178 $B2

51 $33 3 179 $B3

52 $34 4 180 $B4

53 $35 5 181 $B5

54 $36 6 182 $B6

55 $37 7 183 $B7

56 $38 8 184 $B8

57 $39 9 185 $B9

58 $3A : 186 $BA

59 $3B ; 187 $BB

60 $3C < 188 $BC

61 $3D = 189 $BD

62 $3E > 190 $BE

63 $3F ? 191 $BF

0 $00 ^@ 128 $80

1 $01 ^A 129 $81

2 $02 ^B 130 $82

3 $03 ^C 131 $83

4 $04 ^D 132 $84

5 $05 ^E 133 $85

6 $06 ^F 134 $86

7 $07 ^G 135 $87

8 $08 ^H 136 $88

9 $09 ^ I 137 $89

10 $0A ^J 138 $8A

11 $0B ^K 139 $8B

12 $0C ^L 140 $8C

13 $0D ^M 141 $8D

14 $0E ^N 142 $8E

15 $0F ^O 143 $8F

16 $10 ^P 144 $90

17 $11 ^Q 145 $91

18 $12 ^R 146 $92

19 $13 ^S 147 $93

20 $14 ^T 148 $94

21 $15 ^U 149 $95

22 $16 ^V 150 $96

23 $17 ^W 151 $97

24 $18 ^X 152 $98

25 $19 ^Y 153 $99

26 $1A ^Z 154 $9A

27 $1B ^ [155 $9B

28 $1C ^ \ 156 $9C

29 $1D ^] 157 $9D

30 $1E ^^ 158 $9E

31 $1F ^_ 159 $9F

64 $40 @ 192 $C0

65 $41 A 193 $C1

66 $42 B 194 $C2

67 $43 C 195 $C3

68 $44 D 196 $C4

69 $45 E 197 $C5

70 $46 F 198 $C6

71 $47 G 199 $C7

72 $48 H 200 $C8

73 $49 I 201 $C9

74 $4A J 202 $CA

75 $4B K 203 $CB

76 $4C L 204 $CC

77 $4D M 205 $CD

78 $4E N 206 $CE

79 $4F O 207 $CF

80 $50 P 208 $D0

81 $51 Q 209 $D1

82 $52 R 210 $D2

83 $53 S 211 $D3

84 $54 T 212 $D4

85 $55 U 213 $D5

86 $56 V 214 $D6

87 $57 W 215 $D7

88 $58 X 216 $D8

89 $59 Y 217 $D9

90 $5A Z 218 $DA

91 $5B [219 $DB

92 $5C \ 220 $DC

93 $5D] 221 $DD

94 $5E ^ 222 $DE

95 $5F _ 223 $DF

Low HighLow HighLow HighLow High

Low HighLow HighLow HighLow High

96 $60 ‘ 224 $E0

97 $61 a 225 $E1

98 $62 b 226 $E2

99 $63 c 227 $E3

100 $64 d 228 $E4

101 $65 e 229 $E5

102 $66 f 230 $E6

103 $67 g 231 $E7

104 $68 h 232 $E8

105 $69 i 233 $E9

106 $6A j 234 $EA

107 $6B k 235 $EB

108 $6C l 236 $EC

109 $6D m 237 $ED

110 $6E n 238 $EE

111 $6F o 239 $EF

112 $70 p 240 $F0

113 $71 q 241 $F1

114 $72 r 242 $F2

115 $73 s 243 $F3

116 $74 t 244 $F4

117 $75 u 245 $F5

118 $76 v 246 $F6

119 $77 w 247 $F7

120 $78 x 248 $F8

121 $79 y 249 $F9

122 $7A z 250 $FA

123 $7B { 251 $FB

124 $7C | 252 $FC

125 $7D } 253 $FD

126 $7E ~ 254 $FE

127 $7F DEL 255 $FF

36

37

ProDOS File Types

APPENDIX C

Type Hex Dec Description

UNK $00 0 Unknown
BAD $01 1 Bad Blocks
PCD $02 2 Apple /// Pascal Code
PTX $03 3 Apple /// Pascal Text
TXT $04 4 ASCII Text
PDA $05 5 Apple /// Pascal Data
BIN $06 6 General Binary
FNT $07 7 Apple /// Font
FOT $08 8 Graphics
BA3 $09 9 Apple /// BASIC Program
DA3 $0A 10 Apple /// BASIC Data
WPF $0B 11 Word Processor
SOS $0C 12 Apple /// SOS System
DIR $0F 15 Folder
RPD $10 16 Apple /// RPS Data
RPI $11 17 Apple /// RPS Index
AFD $12 18 Apple /// AppleFile Discard
AFM $13 19 Apple /// AppleFile Model
AFR $14 20 Apple /// AppleFile Report Format
SCL $15 21 Apple /// Screen Library
PFS $16 22 PFS Document
ADB $19 25 AppleWorks Data Base
AWP $1A 26 AppleWorks Word Processor
ASP $1B 27 AppleWorks Spread Sheet
TDM $20 32 Desktop Manager Document
8SC $29 42 Apple II Source Code
8OB $2A 43 Apple II Object Code
8IC $2B 44 Apple II Interpreted Code
8LD $2C 45 Apple II Language Data
P8C $2D 46 ProDOS 8 Code Module
FTD $42 66 File Type Names
GWP $50 80 Apple IIGS Word Processor
GSS $51 81 Apple IIGS Spread Sheet
GDB $52 82 Apple IIGS Data Base
DRW $53 83 Drawing
GDP $54 84 Desktop Publishing
HMD $55 85 Hypermedia
EDU $56 86 Educational Data
STN $57 87 Stationery
HLP $58 88 Help
COM $59 89 Communications
CFG $5A 90 Configuration
ANM $5B 91 Animation
MUM $5C 92 Multimedia
ENT $5D 93 Entertainment
DVU $5E 94 Development Utility

Continued . . .

38

C: PRODOS FILE TYPES

Type Hex Dec Description

BIO $6B 107 PC Transporter BIOS
TDR $6D 109 PC Transporter Driver
PRE $6E 110 PC Transporter Pre-Boot
HDV $6F 111 PC Transporter Volume
WP $A0 160 WordPerfect Document
GSB $AB 171 Apple IIGS BASIC Program
TDF $AC 172 Apple IIGS BASIC TDF
BDF $AD 173 Apple IIGS BASIC Data
SRC $B0 176 Apple IIGS Source
OBJ $B1 177 Apple IIGS Object
LIB $B2 178 Apple IIGS Library
S16 $B3 179 GS/OS Application
RTL $B4 180 GS/OS Run-time Library
EXE $B5 181 GS/OS Shell Application
PIF $B6 182 Permanent Initialization
TIF $B7 183 Temporary Initialization
NDA $B8 184 New Desk Accessory
CDA $B9 185 Classic Desk Accessory
TOL $BA 186 Tool
DRV $BB 187 Device Driver
LDF $BC 188 Load File
FST $BD 189 GS/OS File System Translater
DOC $BF 191 GS/OS Document
PNT $C0 192 Packed Super Hi-Res Picture
PIC $C1 193 Super Hi-Res Picture
ANI $C2 194 Animation
PAL $C3 195 Palette
OOG $C5 197 Object Oriented Graphics
SCR $C6 198 Script
CDV $C7 199 Control Panel
FON $C8 200 Font
FND $C9 201 Finder Data
ICN $CA 202 Icons
MUS $D5 213 Music Sequence
INS $D6 214 Instrument
MDI $D7 215 MIDI
SND $D8 216 Sampled Sound
DBM $DB 219 Relational Data Base File
LBR $E0 224 Archival Library
ATK $E2 226 AppleTalk Data
R16 $EE 238 EDASM 816 Relocatable File
PAS $EF 239 Pascal Area
CMD $F0 240 BASIC Command
LNK $F8 248 EDASM Linker
OS $F9 249 GS/OS System File
INT $FA 250 Integer BASIC Program
IVR $FB 251 Integer BASIC Variables
BAS $FC 252 Applesoft BASIC Program
VAR $FD 253 Applesoft BASIC Variables
REL $FE 254 Relocatable Code
SYS $FF 255 ProDOS 8 System Application

ProDOS File Types (Continued)

39

Error Codes

0 NEXT Without FOR: a NEXT was encountered without a matching FOR.
2 Range Error: an invalid argument value was specified.
3 No Device Connected: the given slot has no disk drive installed.
4 Write Protected Disk: unable save data unless write-enabled.
5 End of Data: an attempt was made to read data past the end of a file.
6 Path Not Found: the path to a filename was not found.
7 File Not Found: the specified file was not found.
8 I/O Error: the drive went offline or the disk has a media defect.
9 Disk Full: no room exists on the disk storing more data.

10 File Locked: the file is protected against modification or removal.
11 Invalid Option: an option not allowed for a certain command was used.
12 No Buffers Available: not enough memory for further disk functions.
13 File Type Mismatch: an invalid attempt was made to access a special file.
14 Program Too Large: you've written a FAT and SLOPPY program.
15 Not Direct Command: command was issued from immediate mode.
16 Syntax Error: a filename is illegal or a program statement misspelled.
17 Directory Full: the root volume contains too many filenames.
18 File Not Open: an attempt was made to read or write from an closed file.
19 Duplicate File Name: a RENAME or CREATE used on an existing file.
20 File Busy: an attempt to re-OPEN or modify an OPEN file.
21 File Still Open: upon entering immediate mode, a file was found OPEN.
22 RETURN Without GOSUB: a RETURN with no matching GOSUB.
42 Out of Data: an attempt was made to READ past the last DATA item.
53 Illegal Quantity: an out-of-range value was used with a certain command.
69 Overflow: you used an awfully BIG or amazingly SMALL number.
77 Out of Memory: program code and variables have used up free memory.
90 Undef'd Statement: a line number which does not exist was referenced.

107 Bad Subscript: an array subscript is larger than the given DIMension.
120 Redim'd Array: an attempt was made to reDIMension an existing array.
133 Division by Zero: division by zero is undefined (remember your algebra?)
163 Type Mismatch: a numeric or string value was used incorrectly.
176 String Too Long: the given string was larger than was allowed.
191 Formula Too Complex: go easy on the machine, Einstein.
224 Undef'd Function: reference to an undefined FuNction was made.
254 Reenter: user input was not of the type or format required.
255 Control-C Interrupt: -C was pressed.

APPENDIX D

40

41

INDEX

Index

Symbols

& 9
. (current line) 21
/RAM 8
/RAM5 8
? 20
| 13

 key 11
- - 9

A

Activation 7, 9, 12
Ampersand 9
Applesoft 7

CONT 18
Error handling 26

Arguments 10, 13
Optional 13

ASCII chart 35
Auxiliary memory 8

B

BASIC extensions 7, 9
BASIC.System 7
BC 14
BP 14
Breakpoint 12

Clearing 14
Commands 14

Index number 21
Indicator 21
Invalid 15
Listing 14
Setting 14
Updating 14

BU 14
BYE 22

C

Case sensitive 5
Command line 10
Command summary 20
CONT 18

D

D 20
Debugging display

Overview 10
Status bar 10

Display 20
Clearing 16, 20
Switching 11, 20

E

EL 17
Environment files 17

Loading 17
Saving 17

42

INDEX

Error codes 39
Error trapping

Disabling 26
ES 17

H

H 16
HC 16
Help 20

Summary 11
HIMEM 7
History 15

Buffer 15
Clearing 16
Recording 16
Saving 16
Viewing 15

During input 15
HOME 20
HS 16

I

Interruption 12

K

Keyboard flush
Sequence 9
Vector 22

L

L 21
Line 13
Line/stmt 13
List 21

M

Main memory 22
Unloading RADE 22
Usage 9

Monitor 21
MTR 21

O

ONERR (disabling) 26

P

Pathname 13
ProDOS BASIC 7
Program

Continuing 18
Interrupting 12
Listing lines 21
Resuming 17

Specific line 18
Program flow

Changing 17
Watching 12

R

R 17
RADE

Exiting 17, 18
To prompt 18

Requirements 7
Unloading 22
What it is 5

Resume 17

43

INDEX

S

S 18
Save history 16
Screen See Display
Statement

Current 21
stmt 13

Stepping 12, 18
Multiple 18
Tracing 18

T

Tracing 12

U

UNLOAD 22

V

Variable 13, 18
Modifying 19

Exponents 19
Expressions 19
Floating point 19

Showing 19
Names of 19

Watch
Clearing 19
Defining 20

VC 19
VM 19
VS 19
VW 20

W

Watch variables 18

X

X 18

44

NOTES

45

NOTES

46

NOTES

47

NOTES

When bugs invade

your BASIC programs,

reach for RADE, the

Real-time Applesoft

Debugging Environment!

Pressing - -
halts any program to

enter RADE’s powerful

debugging mode.

Explore a program’s

inner workings without

disturbring memory or

the screen display.

With RADE’s stealth-like

features, bugs become

an endangered species!

Breakpoints

Variable monitoring

Stepping

Tracing

Debugging history buffer

Environment files

Run-time variable modification

Transparent to programs

Uses 768 bytes of main memory

Program flow modification

Variable name listing

Preserves the program’s display

List program lines while running

Run-time access to the monitor

Built-in help

Easy and fun to use

BASI C PEST CONTROL K I L L S BUGS DEAD!

10079 Nuerto Lane • Rancho San Diego • CA 91977-7132 • (619) 670-0563

 Morgan Davis Group

