
 Morgan Davis Group

Installation

User Tutor ial

Online Reference

Pro Line

Copyright © 1992 Morgan Davis Group. All Rights Reserved.

Morgan Davis Group
10079 Nuerto Lane
Rancho San Diego, CA 91977-7132

(619) 670-0563 Customer support
(619) 670-5379 Bulletin board system
(619) 670-9643 FAX

No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, me-
chanical, photocopying, recording or otherwise, without the prior written
permission of the author. No patent liability is assumed with respect to
the use of the information contained herein. While every precaution
has been taken in the preparation of this product, Morgan Davis
Group assumes no responsibility for er rors or omissions.

The product names mentioned in this manual are the trademarks or
registered trademarks of their manufacturers.

ProDOS and ProDOS BASIC are copyrighted programs of Apple
Computer, Inc. licensed to the Morgan Davis Group to distribute for use
only in combination with this product. Apple software shall not be
copied onto another diskette (except for archive purposes) or into
memory unless as part of execution of this product. When this product
has completed execution, Apple software shall not be used by any other
program.

Apple Computer, Inc. makes no warranties, either express or implied
regarding the enclosed software package, its merchantability or its
fitness for any particular purpose. The exclusion of implied warranties
is not permitted in some states. The above exclusion may not apply to
you. This warranty provides you with specific legal rights. There may
be other rights that you may have that vary from state to state.

Sixth printing — November 1992 — U.S.A.

Printed on
recycled paper.

Contents
Personal Note .. 4
Introduction ... 5

Part One: Installation

1: Getting Started
What You Should Know.................................. 9
Hardware Supported 9
Internal Modem Cards 10
Super Serial Card .. 10
Apple IIGS Modem or Printer Port 12
External Modems .. 14
High Speed Modems.................................... 14
Custom Modem Control 15
ProLine Disks ... 16
Install ProLine ... 16
Configure ProLine ... 18
Running ProLine .. 20

2: Logging In
login .. 23
Keyboard Events ... 24
Introduction To PLUSH................................... 24
The Sysop Account 26
The Register Account 27
The Guest Account 28
The MDSS Account 29
Additional Set Up .. 29
Where to Go from Here 32
Programming .. 34

3: Networking
The Networking Advantage 35
Networking Glossary 36
Common Questions 37
Getting Connected 37
The Responsibility of Privilege 38

Part Two: User Tutorial

How To Make Toast 41

Getting Started .. 43
What You Should Know................................ 43
Connecting ... 43
Get Your Account .. 44
Main Menu .. 45
Select Your Preferences 45

Electronic Mail .. 49
You Have Mail ... 49

Conferencing .. 53
Getting Started ... 53
Joining A Conference 54
Reading Messages 55
Adding or Replying....................................... 55
Conferencing In A Nutshell 56

File Library .. 57

Reach Out 59
The Global Village Is Here 59
Sending Net Mail .. 60
Domains ... 60
Islands in the Net ... 62
Internet Guidelines 63

Graduation .. 65
Common Commands 65
More Details .. 65
Road Map ... 66

Part Three: Online Reference

4

Personal Note You are holding the latest manual for a software product that has
consumed nearly every waking moment of my adult life—or so it
seems. Almost ten years ago, I started writing a BBS for my brand
new Apple IIe, because there were no bulletin board systems that
supported my modem back then.

My goal was to provide the basic features of a BBS published by
Southwestern Data Systems, known today as Roger Wagner Publish-
ing. Their Apple DOS 3.3-based BBS, called Online, was written by
Bill Blue. My Online-like BBS would run under Apple’s new operat-
ing system, ProDOS, and was cleverly dubbed ProLine. It was a
limitless project. There was always work to be done, always another
feature to add.

It soon supported external Hayes-compatible modems and adopted a
UNIX file system design, a solid platform for online information
services. It grew so large that it wouldn’t fit on a floppy disk. Soon it
could exchange mail with itself and UNIX computers, in a limited
capacity. Later, Internet mail and newsgroup processing was added.
Today it barely fits on two 800K diskettes.

ProLine’s software milestones mark personal ones for me. ProLine
and I started out in junior college, transferred to San Diego State
University, then shared time between various jobs. ProLine intro-
duced me to many friends and acquaintances, some long forgotten, but
many who are good friends today, like Bill Blue. It allowed me to
start my own software business, and helped me buy my first home. It
was the reason that I met Dawn, sysop of pro-simasd. We married a
couple of years later and have two wonderful kids!

ProLine is more to me than just an item on our product list. It has
permeated every aspect of my life for the last decade. If you have
ever worried about investing in a product that might not be sup-
ported after you take it out of the box, rest assured that this is
probably the most secure and valuable purchase you’ve ever made.

—Morgan Davis

5

Introduction

Whether your world consists of classes or conference rooms, counties
or continents, the ProLine bulletin board system brings people to-
gether. Now you can “link” the neighborhood with the rest of the
world! With networked electronic mail, files, and bulletins, your
Apple becomes a portal of information with the Internet, a global
connection of computer networks.

The Internet is a super data highway allowing millions of people to
participate in worldwide discussion groups. It even connects folks on
commercial services, like America Online, AppleLink, BIX,
CompuServe, Delphi, MCI Mail, and The Well, with users of net-
worked bulletin board systems such as ProLine and FidoNet.

Unlike most systems that clutch onto one feature and ignore
everything else, ProLine not only communicates with the
Internet—an impressive feature by itself—but is perhaps the most
complete BBS for any personal computer. It includes powerful
local electronic mail, personal file management and storage for
each user, automatic and unattended system maintenance, compre-
hensive online help, and incorporates the latest BBS technology
available today. It is friendly and powerful, very easy to install,
and is backed by the Morgan Davis Group with uncommonly
responsive customer support.

This manual is actually three books in one:

Installation
User Tutorial
Online Reference

About This Book

What Is ProLine?

INTRODUCTION

6

Keys

Part One, Installation, helps you prepare your computer system, and
shows you how to install the software onto your drive. Installation
takes about 30 minutes, depending on the speed of your computer
system. After the ProLine software is installed, you configure it to
work in the most optimum fashion with your hardware, then create
your own account on the new system. Now you’re ready to begin
learning about ProLine.

Part Two, User Tutorial, takes you on a quick tour of ProLine,
showing all of its major features, such as working with electronic mail,
conferencing, and file transfers. The tutorial gives you an overview of
ProLine’s features. You’ll want to explore ProLine in more detail.

Part Three, Online Reference, explains the hundreds of features that
make up ProLine. Information in the Online Reference is reproduced
from ProLine’s online documentation. Every aspect of ProLine is
described in the reference section in clear, concise language that helps
you master ProLine.

Throughout this manual the following symbols are used to denote
keys on your keyboard:

reset Reset
option Option or solid-apple

command Command or open-apple
control Control
esc Escape
return Return
delete Delete

Up arrow or control -K
Down arrow or control -J
Left arrow or control -H
Right arrow or control -U

tab Tab or control -I
shift Shift

Hyphenated key references, such as command - esc , tell you to press and
hold the first key while typing the second.

INTRODUCTION

7

Part One:

8

9

CHAPTER ONE

Getting Started
This chapter shows you how to prepare your computer for running
ProLine. You’ll learn about cables, modem settings, and everything
needed to allow ProLine to run on your system.

In order for ProLine to work correctly with your computer, you may
have to make adjustments to your hardware. You should be comfort-
able working with your computer’s peripherals, installing interface
cards, setting DIP switches, and if you have an Apple IIGS, making
adjustments in the Control Panel.

You should be familiar with modems and telecommunications in
general. Though not required, it is helpful if you have some
experience as a user of a bulletin board system. Previous experi-
ence with a ProLine BBS is even more advantageous.

What You
Should
Know

ProLine runs under ProDOS-8 on the Apple IIe and Apple IIGS, and is
compatible with:

Apple IIGS modem and printer ports
Super Serial Card (and clones)
Internal Hayes-compatible modem cards
External modems
Serial and Parallel printer interfaces
AppleTalk networks

In addition to a modem and communications port, ProLine re-
quires:

A correctly wired modem cable
A hard disk with at least 5 megabytes of free space
A ProDOS-compatible clock card (or internal clock)

Hardware
Supported

10

INSTALLATION

Internal
Modem
Cards

Internal modems mimic the combination of a Super Serial Card and a
Hayes-compatible modem. ProLine should be treated as if just such a
combination exists in the computer with an internal modem card.
Read the sections describing the settings for the Super Serial Card and
external modems.

Super Serial
Card

To use ProLine with a Super Serial Card, the cable shown on the
opposite page should be used with your modem. This wiring scheme
provides hardware handshaking flow control (required by today’s
faster modems), data carrier detect, and support for DTR disconnec-
tions.

The special cable allows ProLine to detect the actual carrier signal on
the phone line. Without it, ProLine could not know when the modem
has disconnected with a remote modem. The diagram shows that
DCD is tied to the CTS line. This is required by the Super Serial
Card— it cannot communicate with the modem unless it believes that
a carrier is present. The actual DCD signal from the modem is
mapped to the DSR line at the serial port. ProLine reads this line for
carrier status.

The Super Serial Card’s jumper block must point to Modem, and the
significant DIP switches should be set as follows:

Communications mode (not Printer mode)
Interrupts are on
RS-232C signals are on

You should set the default operating speed of the card to the highest
speed that your modem supports.

NOTE: To use a Super Serial Card in an Apple IIGS, make sure to
visit the Control Panel. Set the slot containing the serial card to
Your Card.

11

1: GETTING STARTED

NOTE: The overhead in managing AppleTalk networking causes
the Super Serial Card to lose data, especially at high speeds. Use
the built-in Modem port for communications on the Apple IIGS. If
you must communicate using the Super Serial Card, turn
AppleTalk off.

DB-25 Connector

12

Apple IIGS

Modem or
Printer Port

To use ProLine with the Apple IIGS built-in Modem or Printer ports,
the following cable is required. This design is standard among high-
end communications products for the Apple IIGS and Macintosh
(which has a similar port design).

Mini DIN-8
Connector

DB-25 Connector

INSTALLATION

13

This cable provides true data carrier detection (DCD). It also supports
hardware handshaking by connecting the Apple IIGS’s two handshak-
ing lines (HSKi and HSKo) to the modem’s CTS and RTS lines. If
hardware handshaking is not used, this wiring optionally supports
DTR for disconnecting. The DTR wiring option is not required if the
cable is to be used with only hardware handshaking.

WARNING: Since this cable allows the Apple IIGS’s output
handshake line to control two different modem signals, problems
may occur if the modem is configured to respond to both RTS and
DTR signals from the computer. With this cable, the modem must
be configured to recognize only RTS or only DTR—not both at the
same time. If hardware handshaking is used, the modem should be
configured to ignore DTR.

The transmit-data and receive-data lines of the Apple IIGS serial
interface conform to the EIA standard RS-422, which differs from the
more commonly used RS-232-C standard. An RS-422 signal is less
prone to noise and interference, and degrades less over distance than
an RS-232-C signal. By grounding the positive side of each RS-422
receiver (RX+) and leaving the positive side of each transmitter (TX+)
disconnected, as illustrated in the diagram, the cable essentially
converts to EIA standard RS-423, and can be used to communicate
with most RS-232-C devices over distances up to fifty feet.

Visit the Classic Desk Accessory menu by pressing command - control - esc .
Open the Control Panel, and select Modem Port or Printer Port de-
pending on the port your modem is connected to. Make sure the
following items are set as indicated:

Dev i ce Connect ed: Modem
DCD Handshake: No
DSR/ DTR Handshake: Yes

ProLine can control the other settings.

NOTE: If you do not use the recommended cable, as shown on the
opposite page, set the DSR/DTR Handshake item to No.

1: GETTING STARTED

14

External
Modems

For proper operation with ProLine, your external modem should be
configured to these settings (if supported):

Send verbal (not numeric) result codes
Report the actual carrier status (support DCD)
Enable command recognition

If you are using a hardware handshaking cable:

Enable bidirectional RTS/CTS flow control
Ignore Data Terminal Ready (DTR)—Apple IIGS only

Otherwise, if you are not using a hardware handshaking cable:

Disable bidirectional RTS/CTS flow control
Enable Data Terminal Ready (DTR) for disconnecting

Newer modems use terminal mode commands to set these options, to
be saved in the modem’s built-in memory. Older modems use DIP
switches for these configurations. See your modem’s manual for
details.

High Speed
Modems

ProLine provides support for high speed modems rated at 9600 bps or
faster, or 2400 bps with data compression. For maximum perfor-
mance, ProLine prefers that your computer and modem operate at the
same speed all the time with a hardware handshaking cable. This is
done by “locking the port” at the highest speed your computer and
modem can handle. Although, your modem might be advertised as a
9600 bps modem, it might be able to communicate with your
computer’s serial port at 19,200 bps.

The Apple IIGS has a maximum port rate of 19,200 bps with standard
software. The Apple Super Serial Card tops out at 9600 bps, but can
be used at 19,200 bps on accellerated systems.

INSTALLATION

15

1: GETTING STARTED

Custom
Modem
Control

As shipped, ProLine includes files containing information on nearly
50 modems. Called modem capability files, or modemcaps, they
describe each modem’s tolerances and features.

Each modemcap is preset to take full advantage of a modem’s fea-
tures. That is, the modem will operate at a fixed speed, at the highest
rate supported, through the use of a hardware handshaking cable.

NOTE: Depending on your computer, serial interface, and cable,
your system may not be able to accomodate the full abilities of
your modem. For example, a stock Apple IIe may not be able to
keep up with the data flow at 19,200 bps. You may have to make
adjustments to your modem’s modemcap file to provide compatible
operation with your system.

ProLine comes with a modemcap file editor, called mc. Mc lets you
change existing modemcap files as well as create new ones to the
specifications required by your system, or to your own personal
preferences.

16

ProLine Disks ProLine comes on two 3.5 inch diskettes:

ProLine.1 ProLine.2

The ProLine.1 disk contains the ProLine installation and configura-
tion utilities. This is the disk you will startup with to install ProLine.
Both disks contain the ProLine software. The contents of these disks
are copied to your hard disk by the installation program.

You should make working copies of these diskettes and file the
originals in a safe place.

INSTALLATION

Install ProLine To install the ProLine software, follow these steps:

1. Insert the ProLine.1 disk into your disk drive. Make sure the
disk can be written to. I t must not be write protected.

2. Restart your computer, or use the Finder or a program
selector to run the Startup program.

The ProLine Tools Main Menu appears.

3. Choose the first item, Read Important Notes.

This displays important information about ProLine that you won’t
find in this manual. Read it now to learn about changes, additions,
last minute notes, and other late-breaking news.

4. Choose Install/Upgrade ProLine.

The ProLine installation program appears, asking if you want to
install a new system or upgrade an old one. Use the and
arrow keys to move the highlight bar to the Install item, then
press return to select it.

17

5. Select the location on your hard disk for ProLine.

The installation program asks you to specify the location on your
hard disk where the ProLine software should be installed. This
location, given as a ProDOS pathname, is known as the ProLine
System Directory.

NOTE: You must decide if ProLine should be installed into your
top level volume directory, referred to as the “ root” directory (e.g.
/A), or into a subdirectory (e.g. /A/PL). If you are dedicating your
entire disk to your BBS, it is best to select the drive’s root volume.
If you plan to share your hard disk with lots of other applications
and files, you might want to put ProLine into a subdirectory. Note,
however, that placing ProLine in, or as close to the root volume as
possible increases the speed of disk operations while running
ProLine. Use short directory names, too.

This manual assumes that you’ re installing ProLine into a
subdirectory on a volume called “A” . The directory name
you’ve chosen is PL. You would enter:

Pr oLi ne Sys t em Di r ec t or y : / a/ pl return

If the PL directory does not exist, the installation program
creates it for you, so you need not give the name of an existing
directory on your drive.

6. Install the first ProLine Backup disk.

The contents of the ProLine.1 disk are copied into your ProLine
System Directory first. This process takes about 15 minutes,
depending on the speed of your computer.

7. Is there another disk? (Y/N) Yes

After the contents of the first backup disk are copied, you’re asked
if there is another disk to restore. Remove ProLine.1 and replace
it with ProLine.2, then press Y for Yes. Repeat this step for any
additional backup disks that came with your ProLine software.
When all the backup disks have been restored, press N for No.

1: GETTING STARTED

18

8. Insert the ProLine.1 disk.

The software installation process is complete. Insert the
ProLine.1 disk to return to the Main Menu. Now ProLine can be
configured.

INSTALLATION

Configure ProLine At the ProLine Tools Main Menu, select Configure ProLine. The
configuration screen appears. Select each menu item and adjust it to
suit your system. Some items offer you a list of choices which you
can select by moving a highlighted bar with the arrow keys.

A. Modem: St d. Hayes . Modem
B. Modem Sl ot : 2
C. Modem Speaker : Al ways Of f

The first three items specify information about your modem.
Pressing A asks you to enter the name of a modem file (entering ?
displays a list of them). Enter the name of the file for your mo-
dem, or choose one of the Standard Hayes-compatible entries.
Press B to select the slot for your modem (the Apple IIGS Modem
Port is Slot 2). Press C to select the modem’s speaker attribute.

D. Pr i nt er : Pr i nt er
E. Pr i nt er Sl ot : 1

The next two items describe your printer. Even if you do not have
a printer, specify a slot that would likely interface with one (the
Apple IIGS Printer Port is Slot 1).

F. Si t e Name: pr o- t es t
G. Domai n:

Press F to enter a unique name for your ProLine site, used for
networked electronic mail addressing. Site names must be one
word, begin with pro-, and cannot contain spaces, periods, or any
punctuation characters other than the one dash (-). The Internet
has reserved the pro- prefix to identify ProLine systems, and all
ProLine sites must abide by this naming convention. Take a
moment to think of something clever and professional. The dictio-
nary includes a lengthy section of words that begin with pro.

19

WARNING: It is imperative that the Domain item remain blank
until your site has 1) linked with another site on the network, 2)
registered a map entry, and 3) received a routing database.
Assigning a domain to your site before completing these steps will
keep mail from reaching your system. You’ ll learn about
networking later.

H. Sysop’ s Logi n: mdav i s
I . Sysop’ s Name: Mor gan Dav i s

Press H to enter the electronic mail name assigned to the sysop’s
account. Like site names, the sysop’s login name is one word with
no dashes, but can contain periods as the only punctuation allowed.
Do not use “sysop”. (ProLine automatically forwards any mail
addressed to sysop to your account). Choose a name that re-
sembles your real name. For example, if you are John Public, your
login name might be johnp or jpublic. Press I to enter your full
name.

J . Ti me Zone: PDT

Press J to enter a three-letter time zone abbreviation for your
geographic area.

K. Temp Fi l es : / r am5/ t mp
L. Spool Fi l es : / r am5/ spool

These last two items give the locations where ProLine will store
temporary files. System performance increases if a RAM disk is
used, at the risk of losing data during a power outage.

Press K to enter the path to a directory in which temporary files,
such as messages in composition, are stored. This directory should
have at least 64K of free space (the Apple IIe /RAM volume is
adequate). Press L to designate the path to a directory for
ProLine’s management of larger amounts of temporary data. This
directory should have at least 1MB of free space available. If a
RAM disk is not available, or not desirable, using “ tmp” or “spool”
(with no path prefix given) is suggested.

1: GETTING STARTED

20

WARNING: These items require the path to a subdirectory. Giving
only a volume name results in a ProLine startup failure, as
ProDOS volumes impose a restriction on the number of files that
may be stored in them, while subdirectories do not. Thus, it is
valid to use /ram/tmp , but not /ram.

Press the esc key when you’re satisfied with the configuration. Your
changes are saved, and you are returned to the ProLine Tools Main
Menu.

INSTALLATION

Running ProLine At the ProLine Tools Main Menu, make sure your modem is con-
nected and turned on, and select Run ProLine. The screen clears and
ProLine begins its startup process. This involves loading communica-
tion modules, initializing the modem, and preparing for ProLine’s
operation.

If ProLine has successfully initialized your modem and is now
displaying a Waiting prompt, your system is now online. Con-
gratulations! You can go to the next chapter.

If your system encountered trouble during startup, here is a check-
list of problems and solutions that may help you get it running . If
you need further assistance, call for technical support.

“ Requires Apple I Ie or Newer”
• You’ re attempting to run ProLine on an Apple II or Apple II+.

These computers are not supported by ProLine.

“ Old (Buggy) BASIC.System”
• ProLine refuses to run under versions of BASIC.System that

contain bugs that would hinder correct operation. Copy
BASIC.System from the ProLine Tools disk over your old
copy.

21

“ Improper ly Configured”
• The configuration file does not exist. ProLine must be config-

ured first before it can run.
• The configuration file is damaged or empty. Restart the

ProLine Tools disk and reconfigure.

“ Can’ t Create Directory”
• A directory given in the ProLine configuration could not be

created (the path may include non-existent directories), or the
volume is offline.

• A root volume was given in the configuration for the temporary
or spool directories. ProLine requires that these directories be
located in a subdirectory on a volume. Reconfigure.

Unexpected Error
• Call for customer assistance.

Fails Initialization, Freezes, or Crashes
• Incorrectly configured Control Panel.
• Incorrectly wired cable.
• Modem is not turned on or connected.
• Modem is not configured properly.
• Wrong slot selected in configuration.
• Wrong modemcap file selected in configuration.
• Modemcap speed is too fast for the computer’s port. If a high-

speed modem is being used on an Apple IIe or with a Super
Serial Card, press I to ignore the failed initialization and
continue with the installation. Later, you’ ll need to use
ProLine’s Modemcap Editor, mc, to lower the modem’s high-
est speed setting, and then restart ProLine. Mc is described in
the Online Reference part of this manual.

1: GETTING STARTED

22

INSTALLATION

23

CHAPTER TWO

Logging In
Now that ProLine is installed and configured, you need to set up the
first user account—yours—so that you can log in and begin exploring
ProLine. This chapter shows you how to log into ProLine to finish
setting up your system.

login After a successful startup, ProLine runs the login program. This
program is characterized by a Waiting prompt at the bottom of the
screen:

Wai t i ng < 01: 23: 45 >

Login patiently waits for various events to occur, such as:

The modem’s phone line rings
The seconds on the clock become 00
You activate commands from the keyboard

When the phone line rings, ProLine answers and attempts to
connect with the caller. Once the connection is established, the
caller is asked to enter a login name and password before entry is
granted.

While waiting for an event, login checks a list of tasks to perform
every minute. When a task’s scheduled time arrives, login initiates
its commands to be carried out by ProLine. It is this mechanism
that gives ProLine its automatic maintenance abilities.

As time passes, login erases the screen, only to to display the time
bouncing around the display. This built-in screen saver protects
the display from phosphor burn, a problem common with computer
systems that remain turned on for long periods of time.

24

Keyboard Events While the time is patiently ticking away, you may press the following
keys:

esc exits to BASIC. (Use RUN to return to login).
Space Bar toggles the screen saver on and off

return lets you log into the system

In addition, you can enter one-key “macros” to invoke various
tasks. Predefined macros are described in the Online Reference
for the login program, if you’ re interested in more details. How-
ever, one macro key that you must learn about now is the exclama-
tion point (!).

When you press ! at the Waiting prompt, the screen shows:

Wai t i ng < 01: 23: 45 > !

At this point, login waits for you to enter a command, and then press
the return key. To get the hang of it, enter the df command.

Wai t i ng < 01: 23: 45 > ! df return

The df command displays the amount of free space on all your drives,
and is just one of many online utilities that come with ProLine. When
df is done, control returns to the login program.

INSTALLATION

Introduction To
PLUSH

All interaction with ProLine is done by logging in to the system by
giving an account name and a password so that ProLine knows who is
using it. In order to log into ProLine, you need an account. Since
there are no accounts yet, the only way to interact with ProLine is by
issuing commands at the Waiting prompt. This allows you to create
your account, as well as completing the final steps in setting up your
ProLine system.

At the Waiting prompt, type ! and enter the plush command:

Wai t i ng < 01: 23: 45 > ! pl ush return

25

2: LOGGING IN

Plush is the ProLine Users Shell, a collection of menus that make it
easy to navigate around ProLine.

NOTE: A “ shell” is a program that provides the user with an
interface that accepts commands, initiates them, and regains
control when they’ re done. The underlying responsibility of all
shells is the same, but their interfaces vary. ProLine comes with
two kinds of shells: plush, the ProLine Users Shell that offers
menu-based command selection, and csh, the C-Shell, allowing the
user to enter commands in a traditional “ command line” interface.
Both shells have advantages over the other. ProLine allows you to
decide which one is right for you, but it initially selects plush as a
user’s shell.

Plush first displays a Main Menu. From here, you can select
ProLine’s major features or open sub-menus to reveal additional
features. Menu items are selected by typing in their corresponding
letter. If an item opens another menu, you can always return to the
previous menu by pressing return .

Right now, creating your own account is top priority. To do this,
make sure you’re at the Main Menu, and type an asterisk (*), Shift-8
on your keyboard. This opens a hidden menu that is accessible only to
you. After typing * your screen should show:

Mai n Menu: *

 Set up Menu (RETURN: Mai n Menu)

 - - - - - - < CREATE >- - - - - -
 S = Sy sop’ s Acc ount
 R = Regi s t r at i on Acc ount
 G = Gues t Ac count
 M = MDSS Ac c ount

 - - - - - - < I NSTALL >- - - - - -
 A = Ac count i ng I nf o
 C = Conf er ence Sy s t em
 D = Dat a Li br ar y
 L = Log Rot at i on Mai nt enance

 - - - - - - < CUSTOMI ZE >- - - - - -
 H = Logi n Her al d
 P = Per s onal Mess age Fr om Sys op
 W = Gues t Wel c ome Mes sage

Set up Menu:

26

INSTALLATION

From the Setup Menu, press S to create an account for the system
operator (sysop)—that’s you. This menu item runs adduser ,
ProLine’s Account Registration utility. Adduser asks for your first
and last name, and prompts you with the name you entered when you
configured ProLine.

Your f i r s t and l as t name : Mor gan Dav i s
return

Just press return . It then asks for your login identifier, and automati-
cally inserts the name chosen during configuration.

Ent er your LOGI N i dent i f i er : mdav i s return

Again, press return . Next, you are asked to select your secret pass-
word:

Ent er your PASSWORD choi ce :

You must choose a password, at least four characters in length. The
longer and more rich in letters, numbers, and symbols, the more secure
your password is. As you enter your password, the keys you type are
not displayed, just as they are not shown when you actually log into
the system. You’ll be asked to confirm your password by typing it a
second time.

Finally, adduser asks that you enter your address and telephone
number for accounting purposes. Once your account is created, you’ ll
return to the Setup Menu.

NOTE: To test out your new account now, press return to return to
the Main Menu, then choose B (for Bye). Back at login’s Waiting
prompt, press return to log in using your new account and
password. Enter your login identifier at the “ login:” prompt, and
your password at the “ Password:” prompt. Eventually, plush
displays its Main Menu, and from here, type * to return to the
Setup Menu so you can continue setting up your system.

The Sysop
Account

27

2: LOGGING IN

When it comes to adding users to your system, a traditional BBS
requires that users submit a request for accounts, which you then must
verify and authorize before any kind of access is granted. ProLine
takes a fresh approach to adding new users to your system. Rather
than going through all that trouble for the 1% whose requests are
denied, your ProLine can allow any user to sign on, sign up, and begin
using ProLine with a personal account during the same phone call.
Most commercial information services work this way.

SAGE ADVICE: Nearly all ProLine systems use the “ open door”
approach. This philosophy tells serious callers that you are fair
and trusting, leaving a positive impression of your system and
clientele. It attracts the kinds of users the sysop enjoys having
around. It also discourages callers who are looking for trouble.
Mischievous callers seek systems run by paranoid sysops, because
they’ re a lot more fun to bother than professional systems run by
benevolent operators. You can’ t “ break into” an open system—
there is no challenge. To be sure, the occasional twit will visit
even the best of systems. As long as their attempts at upsetting
your system are ignored, they will leave in search of a BBS with a
less-experienced operator who reacts with the fire that fuels their
folly.

This automatic registration feature is not activated unless you create a
special register account, which you may add at your option. From the
Setup Menu, select the R item to create the register account. Again,
this invokes adduser which asks you to describe the account. Type in
“Account Registration” as shown:

Descr i pt i on: Account Regi s t r at i on return

Adduser does its best to select a login name for new accounts, but it
isn’t always the perfect choice. You will want to backspace and type
in register instead of the name it suggests for the account:

Ent er your LOGI N i dent i f i er : r egi s t er return

If you’ve decided to adopt the “open door” policy for new accounts,

The Register
Account

28

INSTALLATION

assign the register account with a password of none. Whenever none
is selected for a password, login won’t bother to ask the caller to enter
any password at all.

Ent er your PASSWORD choi ce : none return

If you would rather impose a little control over new accounts, you can
give register a password that you share only with certain people. (As
before, passwords are not shown when entered anywhere on ProLine).

Finally, adduser asks you to specify the “home” directory for the
register account. This is not important for this kind of account, so
simply enter return to accept what adduser suggests:

Home di r ec t or y : / a/ pl / return

Your new register account will let a caller login (as “register”) and
then create a personal account, eliminating the administrative red tape
that most bulletin board systems impose on the operator.

You may want to create an account for guest callers, allowing them to
visit your system without having to register for an account. A guest
account has the lowest access rating, appropriate for first-time callers.

To create the guest account, type G at the Setup Menu. When
adduser prompts for a first and last name, just leave it empty by
pressing return .

Your f i r s t and l as t name : return

Leaving the name item blank forces login to ask the guest caller to
enter a name, city and state when logging in. Next, fill in the blanks
as shown:

Ent er your LOGI N i dent i f i er : gues t return

Ent er your PASSWORD choi ce : none return

This time, when asked to enter the guest account’s home directory,
type in usr/guest (note that there is no “e” in usr):

The Guest
Account

29

2: LOGGING IN

Home di r ec t or y : / a/ pl / usr / gues t return

The guest account is created.

If you plan to make use of ProLine’s networking features (discussed
later), you’ ll want to create the Mail Delivery Subsystem (MDSS)
account. At the Setup Menu, type M .

Enter the following as shown:

Descr i pt i on: MDSS Account return

Ent er your LOGI N i dent i f i er : mdss return

Ent er your PASSWORD choi ce : what ever return

Home di r ec t or y : return

When you enter the password, type in the word “whatever”.

The mdss account is created.

The remaining items on the Setup Menu allow you to install and
customize parts of ProLine. The Install items require the ProLine
Tools Disk to be present.

Install Accounting Info

You can adjust accounting information assigned to each new account
added to the system (e.g. with the register account). The adduser
program assumes certain default information, unless you specify
otherwise. See the adduser description in Administrator’s section
of the Online Reference, notably the resource file settings.

Install Conference System

The Conference System is where bulletins or messages are stored.
Unlike traditional bulletin board systems that label these areas “bulle-
tin boards” or “ forums,” on ProLine they are called conference areas
because active participation is encouraged.

The MDSS
Account

Additional
Set Up

30

Install Data Library

The Data Library is where users can upload and download computer
programs.

Install Log Rotation Maintenance

The Log Rotation Maintenance item installs seven directories on your
system (one for each day of the week) to hold each day’s log files.
This allows you to maintain a week of log files on a rotating basis.

NOTE: ProLine automatically performs system maintenance at
3:20 A.M. and mails you a detailed report of all the tasks that took
place, including a disk free space report, a list of callers who
logged in, newly added accounts, and expired accounts.
Additionally, if your ProLine is networked, the report includes
network traffic statistics. With a number of different log files, it is
left to you to decide how to dispose of them on a daily basis. Log
rotation makes ProLine practically self-maintaining with no
operator intervention required.

The Customize items invoke the ProLine text editor, allowing you to
make changes to files on the system. By default, ProLine uses a line-
oriented text editor, although it does include a full screen editor. You
may want to visit the Preferences menu to select your text editor
before doing any customizations. Refer to the Online Reference part
of this manual for details on using ed, edit, and vedit, ProLine’s text
editors.
These are by no means the only areas that offer customization.

INSTALLATION

31

Customize Login Herald

The herald is a file that the login program displays after each modem
connection before the caller is prompted to enter a login and password
code. This file usually contains a message that tells the caller the
name of your ProLine sites, where it is located, communications
information (e.g. “14.4Kbps V.32bis supported”), and any special
login instructions (e.g. “Use GUEST to visit, or REGISTER to get an
account”).

SAGE ADVICE: Lengthy herald files are discouraged, because
they take up precious time for users and network sites calling long
distance. Pictures, cute phrases, graphics, etc., can be placed in
more appropriate areas such as ProLine’s “ message of the day”
file that callers see after logging in.

Customize Personal Message From Sysop

Each new account is automatically mailed a greeting card from the
system operator. This not only fosters a friendly atmosphere on
ProLine, but shows your users that you care about them. Addition-
ally, it allows new users to work with electronic mail during their first
visit. Use this message to convey any system policies and guidelines
as well.

Customize Guest Welcome Message

When a guest caller signs on, the welcome file is displayed. Use this
to introduce yourself and your ProLine system.

2: LOGGING IN

32

Where to Go
from Here

Congratulations! Your ProLine system is officially installed and can
begin serving you and the users of your BBS. Here are some steps
you may wish to take from here:

Skip to Part Two of this manual, the User Tutor ial, and take
the guided tour. Familiarize yourself with ProLine’s features
and functions from the perspective of a user. This allows you
to learn ProLine so that you can offer assistance to your users.

Read the next chapter, Networking, but only after you’ve
become a veteran user. Networking is one of ProLine’s hottest
features, and can propel an ordinary BBS into an extraordinar-
ily awesome system.

While exploring ProLine you often will refer to Part Three, the
Online Reference. You will read a great number of entries in this
section, but you need not immediately concern yourself with
reading them all from start to finish. Some of the information in
the Online Reference can easily overwhelm the new sysop who
has yet to become a veteran user. Be sure to read the introduction
to the Online Reference so you can use it properly.

NOTE: The C-Shell has been mentioned in passing, even though it
is the core of ProLine’s power and abilities. You may not need to
work with the C-Shell for a while (even though you may not realize
that you already have). At some point, you will discover the side of
ProLine that gives it true power and flexibility, and make the most
of your investment. In the early days there was no ProLine Users
Shell. Many ProLine operators who grew up with the C-Shell have
been successful in adding impressive customizations to their
systems. A healthy understanding of the C-Shell can be
instrumental in designing extraordinary Plush menus.

INSTALLATION

33

Up to this point, you have experienced a fraction of ProLine and its
features. Since ProLine is a vast software package, you might
become discouraged if you have not mastered it after a few days.
Don’ t be! Since ProLine is unlike any other BBS, you may find
yourself exploring new and exciting areas of the system for months
to come. Nobody really masters ProLine, not even its author! You
advance in degrees of awareness and ProLine savvy. Consider all
the applications that make up ProLine:

An operating system
An e-mail package
A bulletin board system
A networked mail and file server
A massive collection of utilities
A program selector
A terminal program

To master ProLine in a couple of weeks is an unreasonable expec-
tation, even if you are a UNIX wizard. There is too much to do
and too much to explore. You have invested in a unique, engross-
ing, sweeping product, so give yourself ample time to experience
ProLine at a leisurely pace. The rewards patiently await your
discovery.

2: LOGGING IN

34

Programming ProLine is a modular communications package patterned after the
UNIX operating system. This architecture affords the highest degree
of power and flexibility when it comes to adding new programs to
your system. Being able to write software that works with ProLine
adds unlimited power to your BBS.

ProLine gets its communications abilities from ModemWorks, a
communications toolbox for BASIC programmers. ModemWorks
takes care of much of the hard work in creating telecommunications
software.

The applications that make up ProLine are Applesoft BASIC pro-
grams that follow rules for interacting in a shell environment. This
allows user information, shell arguments, and configuration settings to
be passed from the shell to its external programs.

To create your own ProLine applications, read the plapp entry in the
Software section of the Online Reference. MD-BASIC and
ModemWorks, both available from the Morgan Davis Group, are
strongly recommended for any coding projects. They make ProLine
development a breeze, which makes enhancing your system a plea-
sure.

INSTALLATION

35

CHAPTER THREE

Networking
ProLine is a wonderful bulletin board system, but it is also a sophisti-
cated networked communications application.

This chapter introduces networking, giving pointers in getting your
site connected with others. Before continuing, you should be familiar
with the way the local mail system works. You might want to use an
existing networked ProLine system to send out a few test letters,
getting the hang of it, so that you’ll know what to expect from your
system.

A BBS is a BBS is a BBS. But a networked BBS is something
altogether different. Compare the value of a non-networked BBS and
its modest gathering of local computer gurus to a networked BBS with
great minds from all around the world. The advantage is obvious.

The network also is a great source of free information and software
that can enhance your business, education, and hobbies. Many com-
panies use ProLine for electronic technical support purposes. With a
turnaround time 500% faster than the post office, online support is a
speedy, cost-effective alternative when customers need help fast.

An advantage of being on the ProLine network is that you’re in
immediate touch with the Morgan Davis Group and friendly, experi-
enced ProLine operators. They can answer your ProLine-related
questions, no matter how technical. And if that isn’t enough, many
operators contribute new ProLine applications to the network. By
networking, your BBS investment becomes increasingly valuable and
rewarding.

The Networking
Advantage

36

The word networking is used so often that it is difficult to understand
just what it might mean. On ProLine, networking describes the
characteristics of two or more ProLine sites that automatically ex-
change electronic mail and files over the phone lines.

With help from features such as the cron task manager and powerful
command shell environments, moving mail between ProLine sites is a
smooth, slick process, seemingly more complicated than it really is.

Some networking terms you should know:

address — a mailing identifier that gives a user’s login name and host
system (e.g. user@site). Addresses sometimes include domains (see
domain).

batch — a group of messages in one file to be unbatched into individual
messages for posting in the conference system. (see news)

bounce — what a message does when it is addressed to an unknown
recipient—it bounces back to the sender.

domain — a tag added to addresses to further describe a site’s position in
the network. Domains are to e-mail addresses as ZIP codes are to postal
mail. (e.g. user@site.domain).

jobs, queues, traffic — electronic mail or files stored on a system, ready to
be delivered.

map — a document that describes a site’s connections and the costs associ-
ated with those connections.

MDSS — Mail Delivery SubSystem; the transfer scheme used to exchange
mail between two connected sites.

news, newsgroup — A remote, electronic conference. A newsgroup is a
continuous stream of related messages (batches), sent from site to site,
containing information on a variety of subjects.

PMDSS — People-NET Mail Delivery SubSystem; a transfer scheme
similar to MDSS, compatible between ProLine and People-NET
(UNIX) hosts.

poll — to dial another system in order to exchange mail, usually for delivery
after scanning.

scan — to scan the MDSS spool areas for pending traffic. If traffic exists
for a site, then that site is polled.

UUCP — UNIX-to-UNIX CoPy; transfer scheme used by UNIX computers
to exchange mail.

INSTALLATION

Networking
Glossary

37

3: NETWORKING

Common
Questions

Here are some common questions asked about networking:

Q: Do I have to be part of the network?
No. Networking is an option (with many advantages). You can run
your ProLine system just like any non-networked BBS. You are not
expected to join the network, but you are always invited to do so.

Q: What does it cost to be on the network?
Nothing. There is no initiation fee, no monthly access charge, and no
yearly renewal fee. All you pay for is standard phone usage.

Q: Which site must I talk to?
Site connections are not assigned. You can arrange to connect with
any systems you desire. Contact the operators of the sites you wish to
connect with after looking through the $/pub/proline/network.sites file.

Q: When should my site poll another?
That’s up to you. ProLine gives you the flexibility of calling other
sites whenever you want. Unlike other networked systems, ProLine
systems can exchange mail at any time while servicing callers be-
tween poll times. Normally, your site would scan hourly, make local
calls at that time, and only make long distance calls during the off-
peak hours. See the poll entry in the Online Reference for more
details on selective poll times.

The first step in getting your system connected to another ProLine site
is to read the intro manual entry in the NET subsection. This gives
you an outline to follow. Read this now to get yourself up to speed on
networking.

When your site becomes part of the ProLine network you must submit
a map entry describing your system. Read the map manual entry for
complete details in creating your map and how to submit it to the map
coordinator.

Getting
Connected

38

INSTALLATION

You must determine when (and how often) you’ ll scan or poll your
connected sites for mail. You need only to add an entry in your $/etc/
crontab file to have these tasks executed at regular intervals.

Once you establish connections, request a subscription to the various
ProLine newsgroups from one of your local connections. These
newsgroups bring ProLine users and operators into world-wide
discussion forums all about ProLine. They’re like online magazines
that keep you abreast of the latest ProLine news. See the unbatch,
rnews, and postnews manual sections for details on setting up
newsgroups.

NOTE: To configure ProLine correctly, you left the Domain
configuration item blank. When you finally receive your site’s
paths database file, you should fill in the domain entry. Most
ProLine sites are governed under the Crash Time Sharing author-
ity (a UNIX computer named crash), and use the .cts.com domain.
Depending on your position on the network you might be better
served by another domain authority.

Becoming part of the ProLine network is a privilege, not a right.
Along with it comes an enormous responsibility. Once networked,
people rely on your site’s presence and cooperation to keep mail
flowing smoothy and reliably. A site that is susceptible to hardware
trouble, or is offline for lengthy amounts of time, should not be on the
network.

You must also insure that only professional and helpful activity
emanates from your site and its users. You will have to police your
users if they abuse the network (e.g. subscribing to newsgroups on
their own without your permission). Operators will not hesitate to
disconnect your site if it cannot comply with the standards and behav-
ior that is expected of ProLine systems.

SAGE ADVICE: Users are guests of the net. Sysops are the
stewards of the net — they care for it and maintain it. Nobody
owns the net. For more on netiquette, see the tutorial manual
entry in the NET subsection.

The Responsibility
of Privilege

39

Part Two:

User

40

USER TUTORIAL

41

INTRODUCTION

How To Make Toast...

You don’t want to spend hours reading the instructions before you can
get the toaster to make toast. It takes only a minute to figure it out,
even if the instructions consist of just a few terse steps:

1. Insert bread

2. Push button down

3. Wait for toast

Simple, right? That depends on how you describe “making toast.”

A toaster is a complex kitchen appliance when you consider the
physics involved in heating bread with a machine. To fully under-
stand every aspect of the process, the instructions would have to
explain the principles of electricity (what makes it go), convection and
variable capacitance (how it heats the bread), mechanical timing (how
long it heats the bread), tension and resistance (what makes the toast
pop up), and the thermochemical changes that turn a limp slice of
bread into a crunchy piece of toast.

Each one of those items would require volumes of technical writing to
describe them. We shouldn’t have to be scientists just to make a
snack. All we want is toast and a little butter.

42

This is a tutorial about using ProLine, a bulletin board system
(BBS) that you connect to using your computer’s modem. Like a
toaster, ProLine offers basic features that should be simple to
figure out. On a BBS, you want to do things like:

Exchange electronic mail

Participate in discussion areas

Get some new software

Hangup, and make some toast

The tutorial walks you through the steps quickly so that you can
start using these basic features right away. It won’ t bog you down
with technical explanations of the options that abound on ProLine.
You can explore those things on your own because, like a toaster,
it would take a lot of reading to learn every aspect of ProLine.

The detailed technical information is provided, if you’ re inclined to
study it, by ProLine’s online documentation system. Once you
have the basics down, working with ProLine’s more advanced
features is easy.

Right now, we just want to get online and start having fun . . .

USER TUTORIAL

43

Getting Started
This chapter shows you how to sign onto your local ProLine system,
get your own account, and get to ProLine’s Main Menu. From there,
you’ll be able to begin using ProLine’s features, as described in the
chapters that follow.

If you’ re using the computer that actually runs the ProLine BBS
software (you’ re not calling in from a remote computer with a
modem), ignore references to connections and modems, as they
won’ t apply to you.

The first thing you need to know is the phone number and operat-
ing speed of the ProLine system you’re calling. You should
already know how to use your terminal program. Fill in the blanks
below for your own reference.

The ProLine system I call is:

The phone number is:

Dial the ProLine system. When you connect, you’ ll see something
like looks like this:

Pr oLi ne [pr o- hos t] Any t own USA

l ogi n:

What You
Should
Know

Connecting

GETTING STARTED

44

The ProLine host identifies itself, and is asking you to log in.

If you already have an account on the host computer, just sign on now
using your login name and password. Then go to the next section.

Before you can use ProLine, you need to register for an account. Most
ProLine systems use a special login name, register , that you enter to
sign up for your own account. (Some systems may use different
names like new or newuser). Enter the name your ProLine host
specifies for obtaining an account.

l ogi n: r egi s t er return

This activates the ProLine Account Registration questionaire.
Follow the directions carefully, filling in your name and address as
instructed, and soon you’ ll have your own personal account. After
your account is created, you are asked to activate it by logging in.

Pr oLi ne [pr o- hos t] Any t own USA

l ogi n: my l ogi n return

Passwor d: mypasswor d return

NOTE: For security purposes, your password is not displayed
when you type it.

Depending on the ProLine you’ re signing onto, you may be pre-
sented with all sorts of interesting things: random words of wis-
dom, news headlines, and so on. These are supplied by the opera-
tor of the system you’ re calling, and vary from system to system.
All systems will tell you the date and time when you lasted called
and if you have any mail waiting.

You have mai l .

Get Your
Account

USER TUTORIAL

45

Eventually, ProLine displays its Main Menu.

 Mai n Menu

 C = Conf er ence Sys t em
 E = El ec t r oni c Mai l . . .
 F = Fi l e Li br ar y

 H = Hel p Desk . . .
 I = I nf or mat i on Desk . . .

 G = Game Room. . .
 M = Mai nt enance. . .
 P = Pr ef er ences . . .
 U = Ut i l i t i es . . .

 B = Bye
 X = Exper t Command Shel l

Mai n Menu:

Again, since system operators can customize and enhance their
systems, what you might see on your screen may differ from what
is presented here. You may have to adjust yourself to the differ-
ences and follow along as best as you can.

Before getting into the main areas of ProLine, such as Electronic Mail
and Conferencing, ProLine should know about your computer’s
communications abilities. This allows ProLine to make the best use of
your terminal program’s features, such as screen emulation, to en-
hance your sessions.

Select the Preferences Menu item by pressing the P key.

Main Menu

GETTING STARTED

Select Your
Preferences

46

This displays the Preferences menu:

Mai n Menu: P

 Pr ef er ences (RETURN: Mai n Menu)

 E = Env i r onment Set t i ngs
 P = Passwor d Change

Pr ef er ences :

Let’s make adjustments to the communications environment, so press
E. You get a new menu:

Pr oLi ne Env i r onment Edi t or

Set t i ngs f or kepl er (Johannes Kepl er) :

 1. Cancel Key : Cont r ol - C
 2. Tabs Ar e: Pr eser ved
 3. Nul l s : 0
 4. Sc r een Hei ght : 24 l i nes
 5. Scr een Wi dt h: 80 col umns
 6. —Mor e— Pagi ng: Yes
 7. Ter mi nal : t t y
 8. Menu Mode: On
 9. Hot - Key Mode: On
 10. Tex t Edi t or : edi t

Number t o change (Q t o qui t) :

The settings that are initially important are your Cancel Key, —
More— Paging, Terminal, and Text Editor. To change an item, just
enter its number and follow the on-screen instructions.

Cancel Key. Your cancel key is Control-C, but you can change it if
you like (to something like Escape). When you press your cancel
key, this tells ProLine to stop what it is doing and return to a point
where it can accept new commands. It is great to have. If you really
screw up and get yourself into a mess, press your cancel key.

—More— Paging. Each time the screen fills, ProLine lets you know
that there is more, and waits for you to press a key so it can continue.
If you’re using a slow modem and find these prompts annoying, you
can turn this feature off permanently. Or, you can leave it on and

USER TUTORIAL

47

temporarily disable it when you don’t need it by pressing the minus
key (-) at the —More— prompt. Most areas on ProLine allow you to
turn it on again by pressing the plus key (+).

Terminal. By now, you’ve discovered that calling a BBS with a
modem leaves much to be desired. A BBS like ProLine can’t control
the whizzy graphics capabilities of your computer to give you dialog
boxes and pull down menus. You’re stuck with a fairly droll display.
Fortunately, if your terminal program supports it, you can jazz things
up a little by enabling terminal emulation. Popular terminals sup-
ported by modern software are: ANSI, VT-100, VT-102, and VT-52.
You can’t go wrong with ANSI emulation, if your terminal program
supports it (most do). This lets you take advantage of all of ProLine’s
screen emulation features. (See your terminal program’s manual for
more details on this esoteric subject).

Text Editor . Second to reading, you do a lot of writing while using
ProLine. Whether you’re composing mail or formulating a reply in
your favorite discussion group, you will call upon one of ProLine’s
text editors to make corrections to your prose. Initially, ProLine
selects a rather simple, but arcane line-oriented text editor (edit) which
works for everyone on ProLine, regardless of Terminal Emulation.
However, ProLine supports a full-screen text editor (vedit) that works
much like a word processor. If you’ve selected adequate terminal
emulation, you will find vedit to be far more enjoyable than edit.
(Unless you’re a UNIX nut, you won’t want to use ed. If you are a
UNIX nut, you don’t need this tutorial!).

Once you’ve set things up as you like, type Q to quit back to the
Preferences Menu. ProLine records your new environment settings
for this and future sessions. You can always adjust your preferences
again if needed.

Now, press return to return to the Main Menu. We’ re going to
check Electronic Mail next . . .

GETTING STARTED

48

USER TUTORIAL

49

Electronic Mail
Of all the areas on ProLine that you really need to know how to use
effectively, electronic mail is your lifeline to assistance if you encoun-
ter difficulties. As long as you know how to send and read mail, you
can keep in touch with the system operator or a knowledgeable contact
who will assist you.

If you recall, when you signed on, ProLine said you had mail. Let’s
go read it now.

At the Main Menu, press E to go to the Electronic Mail Menu.

 El ec t r oni c Mai l (RETURN: Mai n Menu)

 R = Read Your Mai l
 S = Send Mai l

 W = Wr i t e t o t he Sysop

 I = I nt er net Mai l Gui de
 M = Member shi p Di r ec t or y . . .
 N = Net wor k Di r ec t or y

E- Mai l :

Since you have mail, press R to read it. ProLine faithfully opens your
mailbox and displays a summary of the letters waiting.

You Have Mail

ELECTRONIC MAIL

50

| ==== [] | _
Mai l	

You have 1 message (768 by t es)

Msg # Si ze Dat e Fr om Subj ec t
 1 768 Jun 26 mdav i s Wel come!

mai l >

This summary gives you an idea of what is in your mailbox. It shows
the number of letters you have, their sizes, when they were written,
who sent them, and what they’re about.

The easiest way to read new mail in your mailbox is to press N for
Next. This displays the next new message, or in this case, the first
message in your mailbox. Press N now.

Message 1 of 1:

Fr om mdav i s Sun Jun 27 12: 34: 56 1992
Dat e: Sun, Jun 27 92 12: 24: 56 PDT
Fr om: mdav i s (Mor gan Dav i s)
To: kepl er
Subj ec t : Wel come t o Pr oLi ne!

Gr eet i ngs ! I want t o per sonal l y wel come you t o
Pr oLi ne, t he f or emost BBS f or enl i ght ened soul s
such as your sel f . I f you shoul d ever need
ass i s t ance, f eel f r ee t o wr i t e t o me. I want
you t o get t he most f r om Pr oLi ne.

I ’ d l i ke t o know mor e about you, your
i nt er es t s , and what you woul d l i ke t o get out
of t hi s sys t em. Pl ease r epl y now.

1 of 1: mai l >

USER TUTORIAL

51

Well, you heard the man! Press R to Reply. ProLine asks:

1 of 1: mai l > Repl y t o

Since your mailbox can hold more than one letter at a time, ProLine
wants you to tell it which letter you want to reply to. With only one
letter in your mailbox this may seem silly, but there are a number of
responses you may give at this point which you will want to learn
about later. For now, just press return to reply to the current letter (the
one you just read):

1 of 1: mai l > Repl y t o Cur r ent

To: mdav i s

Now, ProLine asks you to confirm the recipient of your reply, which it
has automatically entered for you. The cursor is placed just after the
name, allowing you to change it or add additional names. For now,
just press return .

Subj ec t : Re: Wel come t o Pr oLi ne

ProLine puts the cursor at the end of the new subject so you can
backspace and change it. For now, just press return to accept it.

To: mdav i s
Subj ec t : Re: Wel come t o Pr oLi ne

Ent er your message. Put a " . " on a new l i ne
when done.

:

Now you’re in message input mode where you can enter a reply.
Take a moment to let the sysop know more about you. While entering
your reply, ProLine does word wrapping, like a word processor, when
you reach the right side of the screen. You needn’t press return unless
you want to start a new paragraph.

: I was bor n i n Ger many, 1571. I have a
: s t r ong i nt er es t i n as t r onomy and
mat hemat i cs . . .

ELECTRONIC MAIL

52

When done, press return to put the cursor at the beginning of a new
line, then enter a single period (.) followed by return . This tells
ProLine you’re done entering text.

: . . . l ook i ng f or war d t o r eadi ng sc i . space
: and sc i . as t r o her e. return

: . return

1 of 1: mai l >send>

Notice how the prompt has changed to show that you’re in the process
of composing a message for delivery. To send your message, press S.

1 of 1: mai l >send> Sendi ng t o mdav i s

1 of 1: mai l >

When your reply has been sent, you return to the mail> prompt. Now
mark the current letter for deletion by typing D and return :

1 of 1: mai l > Del et e Cur r ent

1* of 1: mai l >

An asterisk (*) will appear next to messages you’ve marked for
deletion. They’ re not really deleted until you quit, so if you
change your mind you can undelete by typing U. To leave the mail
program, type Q. You’ re asked to confirm your deletions:

1* of 1: mai l > Qui t - - del et e al l messages? Yes

Congratulations! You just read and replied to your first electronic
letter. You’ll find that the steps you’ve taken are typical of most of
your electronic-mail sessions: read, reply, delete, quit.

When you return to the Electronic Mail menu, press return to go
back to the Main Menu.

USER TUTORIAL

53

Conferencing
The Conference System is where system members gather to discuss a
variety of topics in public or private forums. In other words, this is the
area where you read and post messages for all to see.

Bulletin boards, like the one at the post office or drug store, are where
people stand in silence to read something somebody posted with a
thumb tack. In a Conference System, members engage in active
conversations, making conferencing a social event. You get the
feeling that people are participating right before your eyes with a lot of
back-and-forth banter. That’s why we call it a Conference System,
not a Bulletin Board.

From the Main Menu, you enter the Conference System by typing C.

| o- | _
| - - - - - - | |
| - - - - - | | Pr oLi ne
| - - - - - - | | Conf er ence
| __________| | Sys t em
 | _________|

Joi ned t o 0 Conf er ences - - No new messages.

cs>

Upon entering the Conference System, you’ re shown a summary of
new messages in the areas that you’ve joined. (Individual systems
can automatically join you to particular conferences, so your
display may look different than above).

A conference is dedicated to one particular subject and is further
organized into topics. For example, a conference on music might
include the following topics: concerts, discs, reviews, and midi .
When you join a new conference, ProLine automatically joins you
to each topic in that conference. You can unjoin yourself from
individual topics, however.

Getting Started

CONFERENCING

54

The Conference System is so easy to use that the only key you may
ever need to remember is return . This is because pressing return

joins you to the next conference with new messages, and pressing
it again displays the next unread message. Keep pressing return for
each new message until there aren’ t any more left. Then press Q
to Quit . It’s that easy.

The first step in using the Conference System is to join the confer-
ences that interest you. To get a listing of the available confer-
ences, type L for List at the cs> prompt.

cs> Li s t Conf er ences

appl e2 Appl e I I ser i es conf er ence
chat t er Conf er ence f or sundr y chi t chat
i bm. pc I BM PC (and c l ones) conf er ence
mac i nt osh Mac i nt osh ser i es conf er ence
pr ol i ne Al l about Pr oLi ne

cs>

To join a conference, press J for Join, then enter the name of the
conference.

cs> Joi n chat t er return

Wel come t o t he " chat t er " Conf er ence!
Joi ni ng chat t er / mi sc , 100 new messages

cs>r ead>

If the conference has only one topic, ProLine takes you right to it.
If there are more than one topics, you get to select the one you
want to start reading first.

Joining A
Conference

USER TUTORIAL

55

Once you’ve joined a conference/topic, your prompt changes to
show that you’ re now in the process of reading messages. Start off
by pressing return to show the first new message. After each
message is shown, press return again to go onto the next.

To skip over any messages, use the Skip command by pressing S:

cs>r ead> Sk i p t o

The Conference System needs to be told what message you want to
see. To skip over all messages, type L for Last:

cs>r ead> Sk i p t o Las t

The Conference System says:

LAST MESSAGE i n conf er ence/ t opi c

cs>r ead>

Pressing return at this point takes you to the next topic with new
messages. If there are no more new messages, you return to the cs>
prompt.

ProLine lets you contribute to a discussion at any time. If you
want to add a completely new thought to the topic, use the Add
command by pressing A. If you just read a message that requires a
reply, press R. When you Reply, the Conference System asks you
which message you want to reply to (just like in electronic mail):

cs>r ead> Repl y t o

Usually, you’ ll tell it that you want to reply to the current message,
the one you just read, by typing return (or C for Current).

When you Add or Reply, you are asked to enter the Subject of your
contribution. Type in a brief description that summarizes what
your message is about.

Adding or
Replying

Reading
Messages

CONFERENCING

56

cs>r ead> Add message
Subj ec t : How t o make t oas t i n zer o- G return

Msg #6502: ent er t ex t , end wi t h " . " al one.

:

As with a pad of paper, you can write your message and edit it
before you add it to the topic. When done entering text, type a
period on a new line and press return . This takes you to the
cs>read>add> prompt. To save your message, type S for Save.

cs>r ead>add> Sav i ng 6502

cs>r ead>

You now know the basics of conferencing. Your sessions will
typically involve the following steps:

Use List to list the available conferences
Use Join to join those that interest you
Press return after each new message until there are no more
Reply to messages that invite your commentary
Quit back to the Main Menu

USER TUTORIAL

Conferencing
In A Nutshell

57

File Library
In the File Library, you can check out software programs, but you
won’t lose your library card if you don’t return them. Modelled after
the school library you’re familiar with, the ProLine File Library offers
a unique approach for organizing computer files, making it easy to
find the software you want. Take all your items to the Front Desk and
check them out (download them) all at once. Simple.

The File Library is friendly enough to figure out without having to
read lots of instructions, but it includes comprehensive online help
at its Information Desk. You’ ll want to visit the Information Desk
and go on the Guided Tour. Check out the other Information Desk
items as well (to bone up on the Dewey Decimal System?).

You’ ll want to familiarize yourself with your terminal program’s
upload and download protocols before exploring the library. See
your program’s manual for details.

FILE LIBRARY

58

USER TUTORIAL

59

Reach Out . . .
You know that ProLine lets you communicate with users on the
system you call through electronic mail and the Conference System,
but did you know that you can also exchange mail and conferencing
messages with users on computer systems around the world?

This exciting feature is made possible by ProLine’s networking
capabilities. ProLine can link with other ProLine computers, as
well as with a global network of computers known collectively as
The Internet. This network includes all kinds of computer sys-
tems: personal computers, workstations, mini and mainframe
computers, and even supercomputers! These computers are run by
hobbyists, universities, corporate industries, commercial informa-
tion services, and the government. They all cooperate to move
messages and files around the globe faster than traditional paper
mail—an impressive feat.

The Global
Village Is Here

NETWORKING

60

Networking has been around for some time, but is just now becom-
ing known to the general public. ProLine has been networking
since 1985, but only today are the major information services
getting into the act, such as America Online, AppleLink, BYTE
Information Exchange, CompuServe, MCI Mail and others. With
so many computers plugging into the Internet, it is now possible to
communicate with anyone who has a modem, no matter where
they are, even in space! (In 1991, astronauts aboard the space
shuttle used a Macintosh portable to send a message to
AppleLink).

Each computer on the network has a unique name, used as an
address. To send mail to a friend on another computer in the
network, you give your friend’s name and the name of the com-
puter he or she visits. For example, to send a letter to jsbach who
is on pro-musette, you address your message as:

To: j sbach@pr o- muset t e

This reads, “send mail to user jsbach at site pro-musette” . Easy!
(All ProLine site names begin with a pro- prefix).

The Internet is organized in much the same way as our postal
system, with regional “main” post offices and smaller neighbor-
hood stations. When you send a letter from your home to someone
in another state, the letter first stops at your neighborhood station.
Then it gets driven downtown to the main post office where it is
scheduled for delivery by plane to another main post office. The
cycle reverses, and your letter is delivered from a neighborhood
station to your friend’s house.

Imagine the chaos if letter carriers picked up mail and hand-carried
it directly to its destination. The cost would be enormous and it
would take forever. Fortunately, the post office uses a system of
“hubs” to efficiently deliver mail.

Sending
Net Mail

Domains

USER TUTORIAL

61

The Internet uses an even more efficient system of routing elec-
tronic mail through major hubs. This is based on a system of
“domains” where sections of the Internet are responsible for
handling mail within their domain. As an example, all ProLine
systems know how to route mail to any other ProLine system, but
computers outside of the ProLine network have no knowledge of
each ProLine site. If each site on the Internet had to know about
every other site, it would impose a tremendous burden on comput-
ers—analogous to a letter carrier having to hand-carry a letter to its
destination.

In the Internet, sites pass letters through the domain system. In the
postal system, a mail carrier takes your letter back to the neighbor-
hood station. In the Internet, the computer that services a domain
passes your letter to another domain authority. In the postal
system, a station delivers your letter to other stations. Eventually,
Internet mail gets to a destination domain, which knows about the
destination site. Postal mail gets to a destination station which
knows about the destination street. You get the idea.

If site names are like street addresses, then how do you denote a
domain? Domains, like ZIP codes which govern a region of
postal addresses, govern a number of sites. You attach domain
names to address names like this:

To: user @si t e. domai n

This tells your site to deliver a message to the computer that
governs domain. It is that computer’s job to get the message to
site.

Sometimes you may need to include more than one domain in an
address:

To: user @si t e. domai n. domai n. domai n

There are a number of address examples in the next section.

NETWORKING

62

You can send mail to people on computer services that support
Internet mail. Below is a list of some of them with examples
showing how you address them.

Service Description Sample Address

America Online America Online, Inc. • user@aol.com

AppleLink Apple Computer, Inc. • user@applelink.apple.com

ATTMail AT&T, Inc. • user@attmail.com

Bitnet Int’l academic network • user%site.bitnet@gateway

BIX General Videotex Corp. • user@dcibix.das.net

BMUG Berkeley Mac User’s Group • First.Last@bmug.fidonet.org

CompuServe CompuServe Info Services • 71234.567@compuserve.com

Connect Professional Info Network • NAME@dcjcon.das.net

EasyNet Digital Equipment Corp. • user@host.enet.dec.com

• user%host.enet@decwrl.dec.com

• First.Last@ABC.MTS.DEC.COM

Envoy Canadian mail service • attmail.com!mhs!envoy!userid

Fidonet PC-based BBS network • First.Last@p4.f3.n2.z1.fidonet.org

GEnie General Electric Corp. •

GeoNet GeoNet Mailbox Systems • user:geo4@map.das.net

MCI Mail MCI mail service • First.Last@mcimail.com

• 1234567@mcimail.com

MFENet Magnetic Fusion Energy Net • user%mfenode.mfenet@nmfecc.arpa

NASAMail NASA internal e-mail • user@nasamail.nasa.gov

PeaceNet Non-profit mail service • user%cdp@arisia.xerox.com

SINet Schlumberger Int’l Network • user@node.SINet.SLB.COM

• user%node@node1.SINet.SLB.COM

SPAN Space Physics Analysis Net • user@host.span.NASA.gov

• user%host.span@ames.arc.nasa.gov

SprintMail Sprint’s mail service • /C=country/ADMD=system/

O=organization/PN=First_Last/

DD.ID=userid/@Sprint.COM

TheNet Texas Higher Education Net • user%host.decnet@utadnx.cc.

utexas.edu

Islands in the Net

USER TUTORIAL

63

Internet
Guidelines

Using the Internet entails responsible behavior. This can’ t be stressed
enough. System operators deal with discourteous users and abuse of
the Internet on a daily basis. They have little patience for such trouble,
even if due to honest mistakes. Much has been written about what
you should and should not do on the Internet, but here is an essential
list of the things you should know and understand:

Keep messages shor t. The Internet is free for you to access, but
somebody is paying to bring it to you. System operators foot the
bill for their long distance connections. The less data you have to
send, the less the operators have to pay. Make each word count,
because each word does count.

Use shor t context helpers. When you reply to a message, it is
often helpful to briefly paraphrase or “quote” passages of the
message to bring your reply into context. Many people don’ t do
this, and readers have trouble following their replies. Others
include too much information, only to follow it with a one-line
response. Quote only relevant passages, and paraphrase if they’ re
too long.

Respond only when appropr iate. In the Conference System,
read all the messages before responding to a question for which
you have an answer. Somebody may have already posted an
answer. Duplicate responses waste network space and transfer
time.

Avoid online wars. If somebody points out that you misspelled a
word, ignore it. If somebody says that your computer isn’ t as good
as theirs, ignore it. Massive “ flame wars” have started because
people got involved in pointless arguments. Save time and money
by not contributing to such worthless drivel.

Sarcasm is not in the ASCI I set. Computer screens can’ t convey
irony or deep sarcasm. A humorous or sarcastic statement should
be followed with a :-), which looks like a smiley-face turned
sideways. It tells others that you’ re “ just kidding.”

NETWORKING

64

You’re communicating with people, not computers. It is all too
easy to blow your top online and regret it later. The computer
shields us from people and the damage we can do to them through
emotionally heated replies. Always remember that there is a
warm-blooded human on the other side of your monitor.

USER TUTORIAL

65

Graduation
Congratulations! You now know how to work with the major areas
on ProLine. Here are a few final notes before you begin your long and
productive relationship with ProLine.

Most areas of ProLine recognize a common set of commands so
that you don’ t have to shift gears each time you go from one part
of the system to another. Here are some command keys you can
enter just about anywhere on ProLine:

Control-S Stops and starts the display.
Cancel Key Takes you to the most recent command prompt.
? Displays helpful information.
+ Turns on --More-- paging.
- Turns off --More-- paging.
Q Quits the section of ProLine you’ re in, returning

you to the previous command level.

At the --More-- prompt:

Q Acts like you pressed your Cancel Key.
- Turns off --More-- paging.

Any other key resumes output until the screen fills again.

This tutorial quickly introduced you to the major features of ProLine.
Each area, such as electronic mail or the conference system, includes
many commands. A few of them are basic and simple—which you
learned about here. There are other commands that you will want to
explore that make ProLine easier to use than most bulletin board
systems. ProLine can do the hard work that other systems make you
do manually.

Common
Commands

More Details

GRADUATION

66

To find out more about ProLine’s major features, consult the
Online Reference manuals. Simply visit the Help Desk from the
Main Menu after you sign on. The Help Desk includes detailed
descriptions of the Conference System, Electronic Mail, the File
Library, using the Network, and ProLine’s command line shell.
You can also get a listing of the hundreds of other topics in the
Online Reference, then get information on individual subjects.

As you’ ll discover, there is more to explore on ProLine than what
has been presented in this tutorial. Here are some other features
you may want to read up on in the Online Reference manuals:

Your own personal directory in which you can store files and
letters (see csh, login, sx, rx, sz, and rz)

The ability to share and exchange files with other users’ per-
sonal directories (see cat, csh, cp, dstat)

The ability to customize and program your own sessions on
ProLine (see csh and scripts)

Network file server—allows you to obtain files from remote
systems (see server)

Once you start getting into these advanced areas, you’ ll need a map
of the system with which to navigate. See the opposite page.

Road Map

USER TUTORIAL

67

usr

ProLine System Directory

bin etc syspubgames mdss

GRADUATION

Legend pub ... Public files directory
pub/proline............................... Public ProLine files
sys .. System directories
sys/bin Programs and utilities
sys/local Local system additions
sys/man .. Online manuals
sys/modemcaps Modem capability files
sys/modules Communications modules
sys/pcs ProLine Conference System files
sys/pdl ProLine Data Library files
sys/termcaps Terminal capability files
usr ... User directories

bin ... Programs and utilities
etc ... Miscellaneous files
etc/default ... Default files
etc/help .. Help files
etc/notices Copyright and other notices
etc/rsrc .. Resource files
games .. Online games
games/lib .. Score files, etc.
mdss Offsite spool directories

lib proline

termcapspcspdlmodulesmodemcapsmanlocalbin

default noticeshelp rsrc

68

69

Part Three:

Online

70

71

INTRODUCTION

Introduction

ProLine’s extensive online documentation, reproduced on the pages
following, cover a wide range of subjects. To organize the online
documentation, the following sections are provided:

Section Description

ADM System Administration
C General Commands
CT Typesetting Commands
CP Programming Commands
F File Formats
G Online Games
HW Hardware Dependent
LOCAL Local Utilities
M Miscellaneous
NET Networking
S Software Subroutines and Libraries

Each section consists of entries, and each entry describes a particu-
lar part of ProLine. To locate an entry, you need to know the
section it falls under, and then look it up. Sections and entries are
arranged alphabetically, like a dictionary, for easy access. Sections
are shown in parenthesis after the entry’s name.

72

Entries follow a specific format, illustrated here in this typical
sample entry:

SAMPLE(M) ProLine Reference Manual SAMPLE(M)

Name
sample - This one-line summary describes the entry

Syntax
sample syntax shows how to use the command

Description
Begins the main part of the entry describing all the details.

Files
Lists any files related to the entry.

See Also
Lists entries related to this one (suggested reading)

Revised 27 Feb 1992 1 Printed 7 Sep 1992

Special characters are used in the Syntax part of the entry. Items
enclosed in brackets, [like this], denote optional parameters.
Don’ t include the brackets, of course.

Items separated by the pipe (|) character denote choices. For
example, AA | BB, means you include either AA or BB as an
argument.

Elipses (. . .) means “more of the same.” For example, file . . .,
tells you that one or more file arguments may be given.

Syntax

ONLINE REFERENCE

73

Administration addconf (ADM) - Add a conference
addtopic (ADM) - Add a topic to the conference system
adduser (ADM) - Adds new accounts
boot (ADM) - Shuts down and reboots
cron (ADM) - Execute scheduled tasks
cronsw (ADM) - Switch crontab files
cs.maint (ADM) - Conference system maintenance
dl.maint (ADM) - Data librarian maintenance
eduser (ADM) - Edit a user's account
flip (ADM) - Flag inactive persons for removal
gid (ADM) - Group ID utility
maint (ADM) - System maintenance
mc (ADM) - Modemcap editor
mount (ADM) - Mount disk devices
notice (ADM) - Display a notice
rc (ADM) - Command script for automatic restart
rmconf (ADM) - Remove a conference
rmtopic (ADM) - Remove a conference topic
rmuser (ADM) - Remove users
startup (ADM) - System configuration and startup
synctime (ADM) - Synchronize clock to an atomic time reference
tc (ADM) - Termcap editor
unmount (ADM) - Unmount disk devices
updates (ADM) - How to install software updates

add (C) - Append files
alias, unalias (C) - Alias or unalias command names
banner (C) - Print message using big letters
basic (C) - BASIC interpreter
calendar (C) - Personal calendar
calls (C) - Report system usage
cat (C) - Concatenate and print
cd (C) - Change working directory
chat (C) - Chat mode
cp (C) - Copy a file
cs (C) - Conference System
csh (C) - Command shell
csmod (C) - Conference System moderator's utility

Commands

INTRODUCTION

74

ctime (C) - Connect time and accounting info
df (C) - Disk free space
dl (C) - Data Librarian
dstat (C) - Directory access status
du (C) - Summarize disk usage
echo (C) - Echo text arguments
ed (C) - Text editor
edit (C) - Text editor
err (C) - Describe error codes
find (C) - Find files
grep (C) - Find a pattern in a file
help (C) - Get help
hist (C) - System history
if (C) - Conditional command execution
import, export (C) - Text file conversion
it (C) - InteleTerm Pro terminal program
itc (C) - InteleTerm Pro script compiler
log (C) - Display log files
login (C) - Sign on
logout (C) - Terminate connection
lpr (C) - Send files to the printer
ls (C) - List directory contents
mail (C) - Electronic mail
mcinews (C) - Poll MCI Mail for business news headlines
mkdir (C) - Make a directory
more (C) - Browse text files
mv (C) - Move a file
news (C) - Manage system news bulletins
od (C) - Output dump in hex
par (C) - ProLine archive utility
passwd (C) - Change login password
pc (C) - Programmable calculator
plush (C) - ProLine Users Shell
pwd (C) - Print working directory name
resume (C) - Resume file generator
rm, rmdir (C) - Remove files or directories
rot13 (C) - Rot13 file conversion utility
rx (C) - Receive files using XMODEM or YMODEM
rz (C) - Receive files using ZMODEM

ONLINE REFERENCE

75

safecom (C) - File encryption utility
sendmail (C) - Send mail over the internet
server (C) - Internet file server
set, unset (C) - Set or unset shell variables
setenv (C) - Set environment
setfile (C) - Set file attributes
sleep (C) - Suspend execution for an interval
sm (C) - Send modem command
sort (C) - Sort a file
source (C) - Read shell commands from a file
split (C) - Split a file into pieces
stty (C) - Set terminal options
sweep (C) - File utility
sx (C) - Send files using XMODEM or YMODEM
sz (C) - Send files using ZMODEM
tail (C) - Deliver the last part of a file
trim (C) - Trim mailbox headers
tset (C) - Set terminal emulation
unpar (C) - ProLine archive unpacker
uuencode, uudecode (C) - Encode/decode a binary file for mailing
vedit (C) - Visual text editor
wc (C) - Word count
who (C) - Who is on the system

makebook (CT) - Create a file containing the entire manual
man (CT) - Prints pages in the manual
manps (CT) - Print PostScript-formatted pages in the manual
whatis (CT) - Summarizes commands

cs (F) - Conference System file formats
manuals (F) - Format of manuals
plush (F) - Menu format and programming

af (G) - Add a fortune to the fortunes file
fortune (G) - Print a random, hopefully interesting, adage
today (G) - Events on this day throughout history

Typesetting

Formats

Games

INTRODUCTION

76

scripts (M) - All about shell scripts

aliases (NET) - Description of mail alias files
batch (NET) - Process mailboxes into newsgroups
domains (NET) - All about Internet domains
intro (NET) - Introduction to networking
map (NET) - How to create a map entry file
mdss (NET) - Mail Delivery SubSystem
mdssclean (NET) - Mail Delivery Sub-System cleanup
mknull (NET) - Make remote letters addressed to null
mksig (NET) - Make signatures
netauth (NET) - Authorize network mail access
path (NET) - Show the mail route to a site
poll (NET) - Poll a site
postnews (NET) - Post newsgroups to local news areas
rcp (NET) - Remote file copy
rmnull (NET) - Remove null files
rnews (NET) - Distribute newsgroup bundles
scan (NET) - Scan network mailboxes
tutorial (NET) - Networked e-mail tutorial
unbatch (NET) - Convert rnews batches into newsgroup bundles
uutraf (NET) - Network traffic report

plapp (S) - How to create ProLine applications

Miscellaneous

Networking

ONLINE REFERENCE

Software

77

78

ProLine

System Administration

Copyright 1994 Morgan Davis Group

ProLine System Administration ADDCONF(ADM)ADDCONF(ADM)

Name
addconf - Add a conference

Syntax
addconf

Description
Addconf allows the Super User to add a conference (with topics) to the conference
system. The program walks you through the creation of the conference, from choosing
its name and a one-line description, and specifying each topic.

Adding a conference involves these steps:

1. Choose a name. Conference names must be legal ProDOS file names, therefore must
begin with a letter, contain letters, digits, or periods, and be 15 characters or less
in length. Use periods for spacing.

2. Set access. Conferences can be open or closed. An open conference can be joined
by anyone. If you create a closed conference, members can only be joined by a Super
User or the moderator of the conference.

3. You must select a moderator for the conference. The moderator has the ability to
assume temporary Super User access while joined to the conference. This allows them to
remove messages and post in READ-ONLY topics. Enter the moderator’s login name.

4. Enter a description of the conference. Each conference includes a one-line
description for display in the conference listing file. If you enter nothing, the
conference will not be shown in the listing.

5. Addconf asks you to enter the name of each topic, up to six topics total. When
done entering topic names, press RETURN. Like conference names, topics must also be
legal ProDOS file names.

6. For each topic you create, you’re asked if the topic is Read-Only. Read-only means
that members cannot add new messages. You’re also asked if the topic is networked. A
networked topic is one in which local postings are sent to an e-mail address. If the
topic is networked, you’ll be asked for the e-mail address, the corresponding newsgroup
name (if applicable), and whether or not signature files should be attached to
postings.

Note: Postings to Usenet groups should be sent to the rnews mailbox at the local
participating Unix site (e.g., rnews@cts.com).

Files
$/sys/pcs/cs.list - description file of conferences,
$/etc/rsrc/cs.rsrc - contains the path to the cs area.

See Also
addtopic(ADM), cs(C), cs.maint(ADM), csmod(C), rmconf(ADM), rmtopic(ADM)

1 Printed 22 Feb 03Revised 30 March 1994

ProLine System Administration ADDTOPIC(ADM)ADDTOPIC(ADM)

Name
addtopic - Add a topic to the conference system

Syntax
addtopic [conf/topic] [-rs] [-p address] [-n newsgroup]

Description
Addtopic adds a topic to an existing conference. Up to six topics may be added to a
conference. Addtopic can be used interactively or non-interactively as needed.

When invoked without arguments, addtopic prompts you to enter various information to
create the new topic. It first asks you to select the conference, then asks for a name
for the new topic. Topic names are legal file names: 15 characters or less, start with
a letter, and include only letters, numbers and periods. Topics can be created with
read-only access if desired.

A topic can also be assigned networking information. A networked topic is one in which
posted articles are mailed to a recipient for further processing and/or distribution.
Articles posted to a networked topic do not show up immediately. In addition to a mail
address, a networked topic can also include the formal name of a newsgroup under which
it is to be distributed. Finally, adduser allows you to specify if users’ signature
files should be attached to articles posted in the topic.

To use addtopic in a non-interactive mode, include the following arguments (all but
the first are optional):

conf/topic Specifies the existing conference (conf) and the new topic to be
created.

-p address Assigns a posting address (thus defining a networked topic). This
usually references the rnews address at a participating Unix site, or
the address of a mail alias or moderator on another site.

-n newsgroup Assigns a newsgroup name, required for topics that contain USENET
news articles. The -p argument is required in order to direct posted
articles to a USENET site’s rnews account, or the mail alias for a
ProLine-originated newsgroup.

-r Enables read-only access.

-s Enables attachment of signature files to posted articles.

Examples

addtopic
addtopic programming/basic
addtopic proline/announce -r
addtopic info/mailing -s -p info-moderator@site.domain
addtopic org/mdg -p pro-org-mdg@pro-sol -n pro.org.mdg
addtopic apple2/group -p rnews@cts.com -n comp.sys.apple2

1 Printed 22 Feb 03Revised 30 March 1994

ProLine System Administration ADDTOPIC(ADM)ADDTOPIC(ADM)

See Also
addconf(ADM), cs(F), csmod(C), rmtopic(ADM)

2 Printed 22 Feb 03Revised 30 March 1994

ProLine System Administration ADDUSER(ADM)ADDUSER(ADM)

Name
adduser, mkuser - Adds new accounts

Syntax
adduser [options] [interpreter]

Description
Adduser and mkuser work together to add new accounts to the system. Both require
Super User (root) status to run. Without any arguments, adduser creates a staff
level account, and uses csh as the command interpreter. The command interpreter,
usually a shell of some sort, is the program that is run after the user logs in
successfully. If an interpreter argument is given, it is used in place of csh.

The procedure for adding a new account involves choosing an account login name and
password. Login names are 15 characters or less, begin with a letter, and can contain
only letters or digits. Passwords can be up to 12 characters, are not case sensitive,
and can contain any printable characters. If a password of ‘‘none’’ is chosen, the
account is not asked for a password when logging in.

Options can be offered in the command line, instructing adduser to create different
types of accounts. Options for specifying group type are:

-r root account. This level offers full privileges and total access to the system.
Only one account on the system should have root status with access to an
interpreter such as the C-Shell.

-s staff account. This level is for most users on the system. Staff users can be
completely mobile around the system yet cannot view or access any sensitive
material.

-m mail (network) account. This is for use by network computers in order to
exchange e-mail, news, etc. This account does not have a user area.

-g guest account. This is the same as a staff account, except the guest must enter
a name and location if no name is given to this account. Guest accounts cannot
modify their Conference System information file.

These options specify other account attributes:

-a bypass accounting. This assigns a user-ID of 0 to the account. No user area is
created, and no user information is requested. Adduser will only ask for a
description of the account being created.

-l do not copy the default login and cshrc scripts to the user’s home directory.
This is desired when assigning a command interpreter other than csh, as only
csh executes these scripts.

-u do not prompt for user information, useful when creating a guest account. Usually,
adduser asks for a user’s full name, address, and phone number.

1 Printed 22 Feb 03Revised 15 May 1994

ProLine System Administration ADDUSER(ADM)ADDUSER(ADM)

-n no network access. This prevents a user from sending mail to offsite addresses in
the network.

-i do not create a signature file for the user.

-w do not mail the welcome file to the user’s mailbox.

Examples

adduser -gun plush

Create a guest account, no user info, no network mail access, use plush (the
ProLine User’s SHell) as the interpreter.

adduser -m mdss

Create a network mail login entry. Use mdss as the interpreter.

 adduser -rau "adduser -s csh"

Create a login entry which runs adduser as the interpreter with options for
setting up a staff account. This allows a caller to create an account
without any administrator intervention. Although this example creates a root
level account (adduser can only be run from a root process), the person
using it causes adduser to create a personal staff level account.

If an account’s name or description is left blank, a login attempt using that account
name will be prompted for a name and location. This is mainly used for guest accounts.

Creating a User Account

A typical user account is created in the following manner:

1. Adduser asks the user to fill in a number of information fields, then creates an
entry in $/etc/passwd (see below for entry description). An account record is
created for the user in $/etc/adm, a database containing statistics for each
user of the system. An entry containing information about the newly created
account is appended to the adduser.log file.

2. Adduser then transfers control to mkuser, a shell script that can further
complete the installation of user accounts. Mkuser creates the user’s home
directory. The default login and cshrc scripts are copied here for the user. A
signature file may also be created.

3. A directory with the user’s login name is created in $/adm. This area is used
by the system for storing the user’s data files.

2 Printed 22 Feb 03Revised 15 May 1994

ProLine System Administration ADDUSER(ADM)ADDUSER(ADM)

4. A welcome file is sent to the user’s mailbox. This file contains a personal
message from the administrator.

The _Mkuser_ Script

Since adduser can only create user accounts when it is invoked with super user
status, that allows mkuser to perform similar super user functions. It is important
to understand that mkuser is run under the parent process that invoked adduser --
IT IS NOT BEING RUN AS IF IT WERE OWNED BY THE NEW USER BEING CREATED.

This means the user--AT NO TIME--should ever get interactive access to any part of the
system that might lead to a security problem. Furthermore, invoking commands intended
to effect the user being created is futile because the effective user is most likely to
be root, the system administrator, or an account registration user with super user
status, NOT the intended user.

Mkuser is provided to allow customized file control while an account is being
created. In addition, the distribution version of mkuser lives in $/etc and should
not be modified. A copy of mkuser can be placed into the effective user’s ‘‘~/bin’’
directory or into the system’s local ‘‘bin’’ directory (e.g., $/sys/local/bin) such
that it takes precedence over the distribution version.

Password File Entry

Adduser alphabetically inserts a new account entry into the password file. Password
entries have this format:

jdoe:ASji8aQd3pxYg:142:1:John Doe:usr/jdoe:csh

This corresponds to:

Login : Password : UID : GID : Name : Home : Interpreter

The user-id (UID) is a unique number identifying the user. The group-id (GID) is
one of the following:

0 - Root-level account
1 - Staff-level account
2 - Network mail account
3 - Guest-level account

The user’s home directory and interpreter pathnames do not start with the system’s
startup prefix ($/). This is added by login so that any name change of the startup
prefix avoids a complete update of the password file. A path to the interpreter is not
needed unless it does not reside in any of the standard directories for programs.

3 Printed 22 Feb 03Revised 15 May 1994

ProLine System Administration ADDUSER(ADM)ADDUSER(ADM)

Resource File

Adduser reads a resource file ($/etc/rsrc/adduser.rsrc) containing information on
account settings when adding a new user. The resource file consists of five lines of
information:

Minutes Per Month The total minutes per month the user can spend on the system each
month. If the user overspends his allowance for the current month,
access is denied until the beginning of the next month. Time
allowances are reset at the beginning of each month. Default 1200
(40 minutes per day average). If set to zero, the time allowance is
unlimited.

Inactive Days The number of days that may pass without logging in before the
user is flagged for removal due to inactivity. If set to zero, the
inactivity removal feature is disabled. Default 60 days.

Cents Per Minute The cost for access time in pennies per minute. A value of 1.5
would denote a 1.5 cent per minute access charge, or 90 cents per
hour. Default 0 cents per minute (no access charge).

Max Accounts The number of accounts that can be active at any one time.
Default 200 users.

Leniency Level If 0, adduser is specific in accepting input entered by the
user. For example, it refuses to continue until the user enters
exactly ten digits for the phone number. If 1, it is lenient about
input, useful for systems that receive calls from users who live
outside of the United States. Default 0 (no leniency)

If the resource file is not present, the default values are used.

Files
$/etc/adm - accounting database,
$spool/logs/adduser.log - log of new user accounts,
$/etc/passwd - password file,
$/etc/mkuser - shell script for customized user account creation,
$/etc/help/adduser - introductory help file,
$/etc/default/mail - welcome letter,
$/etc/default/login - default login script,
$/etc/default/cshrc - default cshrc script,
$/etc/rsrc/adduser.rsrc - resource file,
$/adm/* - user’s system data directory,
$/usr/* - user’s home directory.

See Also
startup(ADM), eduser(ADM), login(C), passwd(C), rmuser(ADM)

4 Printed 22 Feb 03Revised 15 May 1994

ProLine System Administration BOOT(ADM)BOOT(ADM)

Name
boot - Shuts down and reboots

Syntax
boot [option] [app | slot]

Description
Using boot is the preferred method for taking the system offline. Without any
arguments, boot shuts down the system and reboots.

Boot recognizes these options:

-b Enters BASIC immediate mode.

-h Does not hangup if there is a connection.

-q Quits BASIC and returns to the operating system.

-r Restarts the system by running the $/ProLine program.

If boot is given a numeric argument from 1 to 7, it attempts to boot the computer
from the device in that slot.

If the argument is a filename of an executable file, that file is launched.

See Also
startup(ADM)

1 Printed 22 Feb 03Revised 30 March 1994

ProLine System Administration CRON(ADM)CRON(ADM)

Name
cron - Execute scheduled tasks

Description
Cron is a task that operates once every minute from within the login program while
the system is idle (waiting for callers or for a console instruction). It executes
commands at specified dates and times according to the schedule in the file
$/etc/crontab.

Sample crontab file:

Day ## Month HH MM Command
* * * * 09 csh echo "Scanning..."; scan
* * * 03 20 csh maint -r
* * * 06 30 lpr /hd0/spool/lpr
* * * 18 30 lpr /hd0/spool/lpr
Sun * * 00 00 boot
* * Jul 03 30 csh doublemaint
* 1 Jan 00 00 banner Happy New Year!

Each line in crontab, good for one time event, contains six fields of information. The
arguments in each field must be correctly placed under the field header, the first line
in the file.

The six fields, from left to right, are the day of the week (string), date of the month
(integer), month of the year (string), the hour (integer), the minute (integer), and a
command with any necessary arguments. Unless a path is explicitly given, commands are
assumed to reside in $/bin.

All hour and minute arguments must fill the entire width of their associated field
(i.e., ‘‘03’’ for ‘‘3’’). The date of the month is padded with spaces (see the above
example for January 1). If an argument starts with an asterisk (*), that entire
argument is treated as a wildcard (it will count as a matched time pattern).

In the above example, the system will ‘‘scan’’ for outgoing mail every 9 minutes on the
hour. It will run the ‘‘maint’’ C-Shell script every morning at 3:20. Any queued
printer jobs in /hd0/spool/lpr will be printed twice a day at 6:30am and 6:30pm. Every
Sunday at midnight, the system will reboot itself. During the entire month of July,
the double maintenance C-Shell script is executed at 3:30 in the morning. And on
January 1, the system will wish you a Happy New Year.

It is best to put high-frequency tasks before other tasks, as shown in the above
example. Also note that if you need to perform two or more tasks at or about the same
time, you can have crontab reference a single shell script that will perform all the
appropriate duties.

Note that internal shell commands, such as ‘‘echo’’, and shell scripts must be called
using the name of the shell first, as in ‘‘csh echo Hello World’’. This is because
cron assumes the first argument in the command line is a program in the $/bin
directory.

1 Printed 22 Feb 03Revised 2 May 1992

ProLine System Administration CRON(ADM)CRON(ADM)

Files
$/etc/crontab - task table.

Note
Since this isn’t a true multitasking computer, tasks in crontab will only run when the
system is not busy doing something else. Understand that some jobs might not get
executed. If one task follows a previous task within a span of a minute or two, they
should be invoked from a single shell script, one after the other.

See Also
sleep(C)

2 Printed 22 Feb 03Revised 2 May 1992

ProLine System Administration CRONSW(ADM)CRONSW(ADM)

Name
cronsw - Switch crontab files

Syntax
cronsw tag

Description
Cronsw, a shell script, allows the system administrator to switch crontab files. The
tag argument specifies the suffix of a ‘‘cron’’ file to switch to. For example, if
the tag is ‘‘day’’, the $/etc/cron.day file is copied to $/etc/crontab file, and
becomes the current task schedule.

Files
$/etc/cron.tag - files accepted as input by cronsw,
$/etc/crontab - output file of cronsw, used by system to schedule tasks.

See Also
cron(ADM), scripts(M)

Author
Dean Fick (dean@pro-electric)

1 Printed 22 Feb 03Revised 2 May 1992

ProLine System Administration CS.MAINT(ADM)CS.MAINT(ADM)

Name
cs.maint - Conference system maintenance

Syntax
cs.maint [conference]

Description
Cs.maint is a full screen, menu driven program that aids in the maintenance of the
conference system. It allows the system administrator to change the names of
conferences and topics, moderators, posting addresses for networked conferences, and
the read-only status of topics. If a conference name is specified, cs.maint acts as
if the find option was used to select that conference.

Note
When a conference is renamed, it is treated as if you removed the old conference, and
created a new one, hence the users must re-subscribe to the conference.

See Also
cs(C), csmod(C)

Author
Daniel Davidson. Bugs or suggestions should be sent to danield@pro-grouch.

1 Printed 22 Feb 03Revised 2 May 1992

ProLine System Administration DL.MAINT(ADM)DL.MAINT(ADM)

Name
dl.maint - Data librarian maintenance

Syntax
dl.maint

Description
(Throughout this manual entry, dl denotes the prefix to the Data Library’s location
as stored in $/sys/pdl/dl.dir).

This program performs five major functions in relation to the data librarian program:

o maintenance of the card catalog (dl/lib/dl.data), the program subdirectory
(dl/lib/prog/*), and the program description subdirectory (dl/lib/desc/*).

o maintenance of the library shelves (dl/lib/dl.vars). A maximum of 16 shelves are
allowed.

o maintenance of index files (dl/lib/link/*) that contain the names of all programs
in the Data Library that are related to one another (see subheading on LINK FILES).

o configuration of certain ‘‘preference’’ settings, such as the assignment of a
librarian other than the system administrator, requiring a minimum baud rate for
Data Library access, guest caller access limits, the maximum number of downloads
allowed per session, upload filesize limit, and freespace (volume overhead) limit.

o moving ‘‘archived’’ programs to offline storage, freeing up disk space.

Options supported for file-oriented maintenance are:

Edit Edit the record displayed on the screen.

Delete Delete the record, program and description from the Data Library.

Find Find the record matching the program title entered. Using a ‘‘*’’ will
instruct dl.maint to find all titles that are ‘‘on hold’’.

Next Display the next record in the Data Library.

Previous Display the previous record in the Data Library.

Quit Exit the maintenance subroutine and return to the maintenance menu.

Link Files

When the user downloads files placed on reserve the program will open the
dl/lib/link/* file and search for any program/data files that are ‘‘related’’ to the
selections placed on reserve. If related files are found the user will be given the
option of including these ‘‘linked’’ files in the download.

1 Printed 22 Feb 03Revised 2 May 1992

ProLine System Administration DL.MAINT(ADM)DL.MAINT(ADM)

For example, let’s assume that there is a program called EDITOR in the library that has
associated documentation (EDITOR.DOCS) and will require the ShrinkIt program to
‘‘decompress’’ the program file. Since the user will need copies of EDITOR.DOCS and
ShrinkIt to use the EDITOR program the librarian should add them to the dl/lib/link/*
file using option #3 (Edit Link List) from the maintenance menu.

Notes
All information related to a record in the Data Library can be changed except for the
program filename stored in the dl/lib/prog subdirectory. The program filename must
remain unchanged in order for the link/support programs to work correctly!

All programs should be thoroughly tested before their status is changed from ‘‘on
hold’’ to ‘‘available’’ so that pirated or non-working programs aren’t downloaded by
users.

Even though a program has been ‘‘archived’’ (moved to offline storage) the card catalog
entry will remain online. The entry must be deleted from the card catalog if you wish
to remove all references to the program.

Important
If you intend to access dl.maint via dialup (remote) your telecommunications program
must support some type of terminal emulation mode.

Files
dl/lib/dl.data - data definitions,
dl/lib/dl.vars - environment file,
dl/lib/prog/* - program files in the library,
dl/lib/desc/* - description files for catalog cards,
dl/lib/link/* - link file indexes.

See Also
dl(C)

Author
Jerry Hewett

2 Printed 22 Feb 03Revised 2 May 1992

ProLine System Administration EDUSER(ADM)EDUSER(ADM)

Name
eduser - Edit a user’s account

Syntax
eduser [name]

Description
Eduser allows you to change the account information for users on the system, such as
names, addresses, and phone numbers. In addition, you may adjust the amount of time
allotted for usage each month, the rate per minute at which the user is charged for
access, and the number of inactive days allowed before the account expires.

The user editor is very simple to use in that it takes advantage of special terminal
functions, such as cursor addressing and other features provided by the terminal
installed.

To start eduser you can give it a name to bring up for editing (the default is the
first user listed on the system alphabetically). Eduser will read the password file
into memory and then display a form on the screen, filling it in with the specified
user information.

At the bottom of the screen, before the cursor, the number of accounts is shown between
square brackets (e.g., [128]). Commands at this point are:

Next Display information for the next user in the database.

Prev Backup and display information for the previous user.

Find Search the database for a user name. (The login name, not the user’s full
name).

Edit Enter the edit mode to make changes for the current user on the screen.

Dump Send a copy of the user’s name, address, and phone number to the attached
printer device in slot 1. (Don’t use this if you don’t have a printer!)

Quit Quit eduser and return to the shell.

While in Edit mode, any character you type will be inserted at the cursor’s position,
as long as the field not already filled with the maximum characters allowed. The
following editing keys can be used:

RETURN Move down to the next field.

Control-J Move down to the next field.

Control-K Move up to the previous field.

1 Printed 22 Feb 03Revised 2 May 1992

ProLine System Administration EDUSER(ADM)EDUSER(ADM)

Control-H Move left one character.

Control-U Move right one character.

Control-A Go to the start of the field.

Control-E Go to the end of the field.

Delete Erase the character to the left of the cursor.

Control-D Gobble up the character under the cursor.

Any time you move above the first field, or below the last field, you’ll leave Edit
mode and return to the main prompt. If any changes were made, they are written to the
database at this point for the specified user.

If any changes were made to the ‘‘Full name’’ field for any of the users, the password
file will be updated when you quit eduser.

If a user is allotted zero minutes of usage per month, the system will regard this as
an infinite amount -- meaning, the user has no time limit imposed. Likewise, if the
inactive days are set to zero, the user’s account will never be removed due to any
length of inactivity.

Note
Any accounts which have User-ID’s of 0 will bring up record 0 of the account database.
This record should not be messed with. Leave it alone.

Only root-level users can run eduser.

Diagnostics
‘‘inadequate terminal’’, the terminal does not have functions required for use with
eduser.

Files
$/etc/adm - account database,
$/etc/passwd - password file.

See Also
adduser(ADM), rmuser(ADM)

2 Printed 22 Feb 03Revised 2 May 1992

ProLine System Administration FINAMING(ADM)FINAMING(ADM)

Name
finaming - File naming status and control

Syntax
finaming [-ls]

Description
Use finaming without arguments to report the operating system’s current naming
convention: AppleTalk Filing Protocol or standard ProDOS. AFP naming is desirable over
ProDOS’s rigid syntax checking in order work with files on AppleTalk devices.

Using -l (long names) turns on AppleTalk Filing Protocol naming, while -s (short names)
turns on standard ProDOS naming.

Note
This command is useful from within the system’s $/etc/rc2 script to enable AFP Long
Name convention, assuming AppleTalk services are present.

See Also
rc(ADM)

1 Printed 22 Feb 03Revised 5 May 1994

ProLine System Administration FLIP(ADM)FLIP(ADM)

Name
flip - Flag inactive persons for removal

Syntax
flip [-a] [-d days]

Description
Flip (FLag Inactive Persons) scans through the entire user account database
($/etc/adm) looking for staff and guest accounts that have been inactive for more
than their grace period. Any accounts found to be inactive beyond the grace period are
written into a file named rmip in your $home directory. (If the grace period for an
account is zero days, flip ignores the account).

The -a option causes flip to include accounting information in the report file,
listing the user’s full name, address, and phone number.

The -d option overrides each user’s grace period with a set number of days applied to
all accounts.

The report file that flip generates into $home/rmip contains lines showing the
flagged user’s name, and how many days beyond the inactivity grace has lapsed.

Example:

jdoe # inactive 35 days (max=30)
sjones # inactive 45 days (max=40)
tch # never activated

The last entry indicates that the user’s account was created, but a login attempt was
never made. This happens when a new user forgets his password before logging in for the
first time.

The rmip file is formatted for use with rmuser.

Note
If more than ten accounts are flagged for removal, the report file is placed in the
operator’s directory with the name rmip.big. This is a safety feature in the event
that the computer’s clock leaps ahead so far that many, if not all, accounts are
flagged for deletion.

Flip does not remove accounts, it simply flags them for removal.

Files
$/etc/adm - account database,
$home/rmip - report of inactive persons.

See Also
eduser(ADM), maint(ADM), rmuser(ADM)

1 Printed 22 Feb 03Revised 20 January 1994

ProLine System Administration GID(ADM)GID(ADM)

Name
gid - Group ID utility

Syntax
gid [option]

Description
Gid provides the sysop or root level user with fast information for completely
tracking all user access on a system.

The command line options select the various types of reports to display:

-r root accounts. Similar to the format of who.

-s staff accounts. Similar to the format of who.

-i all accounts with interpreter used by the login ID. Cannot be used with -p.

-p show passwords in the report. Cannot be used with -i.

Reports can be redirected to file by including >filename as the last argument on the
command line. The report file contains all access information in one neat little
package that can be viewed, edited or printed.

Files
$/etc/passwd - password file,
$/etc/adm - accounting database.

See Also
who(C)

Author
Joel Bressman.

1 Printed 22 Feb 03Revised 2 May 1992

ProLine System Administration MAINT(ADM)MAINT(ADM)

Name
maint - System maintenance

Syntax
maint [-r]

Description
Maint, a shell script that should be invoked as a daily cron task, performs many
housekeeping functions. It generates a report of the tasks it completes and mails it
to the administrator.

Maint reports on the following:

1. Users who recently called.
2. Newly added accounts.
3. Expired accounts.
4. File server activity.
5. Network mail traffic statistics.
6. Errors during network connections.
7. Errors during news processing.

If the -r flag is included, maint removes any accounts that have expired.

When done, maint chains to maint2 if it exists. Maint2 is the local maintenance
script that performs host-specific tasks. These tasks can include the disposition of
log files (e.g. rotating, printing, and/or removing them), and running mdssclean,
synctime, or any other periodic maintenance utilities.

Files
$spool/logs/* - system log files.

See Also
cron(ADM), flip(ADM), rmuser(ADM)

1 Printed 22 Feb 03Revised 2 May 1992

ProLine System Administration MC(ADM)MC(ADM)

Name
mc - Modemcap editor

Syntax
mc [modemcap]

Description
Using a full-screen display, mc is used to create or edit modem capability (modemcap)
files. These files include settings and commands that control external modems for use
with ProLine.

When mc is invoked without an argument, it reads the system configuration file
($/etc/rsrc/startup.rsrc) and loads the currently active modemcap file. Use cursor
keys (or the T-pattern from the 8, 4, 5, and 6 keys on a numeric keypad) to move from
field to field on the display. A ‘‘>’’ points to the current field.

A row of ‘‘buttons’’ at the bottom of the display controls file management functions:

[Quit] Quits mc.

[New] Work with a new modemcap file. This prompts you for a modemcap name. If the
name given already exists, it is loaded into the editor. If the file you
enter does not exist, a new modemcap is created.

[Save] Saves changes made to the modemcap. You’re given the opportunity to save it
under a different file name.

[More] (Same as pressing the Tab key). Switches to the alternate modemcap editing
screen. The primary screen includes communications settings and timing
information. The secondary screen displays modem commands.

To activate a button, press the first letter of its name (e.g., ‘‘Q’’ to quit).

Communication Settings

To change items on the primary screen, use the right and left arrow keys, or 4 and 6 on
the numeric keypad. The primary screen items are:

Variable Speed Determines if the serial port rate should match the modem’s
reported connection rate. Set to Yes for an old-style modem
(typically, 2400 bps or slower). Set to No for high-speed modems
that operate best at a fixed speed to employ features such as data
compression.

High Speed The highest speed both the modem and computer will accept.

Flow Control Normally set to RTS/CTS if a hardware handshaking cable is used,
otherwise, set to None.

1 Printed 22 Feb 03Revised 30 March 1994

ProLine System Administration MC(ADM)MC(ADM)

Has Carrier Detect Must be set to Yes for correct BBS operation.

Error Correction Set to Yes if the modem includes commands to regulate error
correction.

ATA Answers Set to Yes unless using an old modem, such as the Apple Modem
300 or USRobotics Password, which cannot answer a ringing line with
the ATA command.

Use DTR To Hangup If the modem is used on an Apple IIGS with a cable that supports
hardware handshaking, set this to No. Normally, this item should
be set to Yes.

Timing

Hangup Duration The time that DTR is held low to force a disconnect (used only if
the previous item is set to Yes).

Result Code Delay The time that the system waits for a response from the modem after
sending a command.

+++ Guard Time The delay before and after the modem escape command is sent.

Attention Delay The delay before a new command is sent after receiving a response
from a previous command.

Commands

Items on the secondary screen are:

Main Init Commands that correctly configure the modem to operate with
ProLine. This command normally starts out by setting the factory
defaults (&F) and any other commands needed to adjust the defaults
follow. ProLine does not require command mode echo, so E0 can be
given.

Aux Init Commands, such as S register definitions to further configure the
modem for operation with ProLine. Most factory defaults are fine,
except for S7, which should be set to 255 to allow ProLine to control
the duration of connection attempts.

Exit Init The command sent to the modem when the system shuts down.

MNP The MNP On and Off commands adjust the modem’s error correction
feature.

Busy The Make Busy and Not Busy commands control the modem’s ‘‘hook’’
state. Make Busy takes the phone off hook. Not Busy puts the phone
back on hook.

2 Printed 22 Feb 03Revised 30 March 1994

ProLine System Administration MC(ADM)MC(ADM)

Hangup Hangup and Post Hangup commands are sent before and after,
respectively, a disconnection request.

Files
$/sys/modemcaps/* - modemcap files

See Also
startup(ADM)

3 Printed 22 Feb 03Revised 30 March 1994

ProLine System Administration MOUNT(ADM)MOUNT(ADM)

Name
mount - Mount disk devices

Syntax
mount device ...

Description
Mount restores the selected disk devices into the operating system’s active device
list. This has the effect of making unmounted volumes visible again.

A device argument consists of a slot and drive specifier (e.g. 5.1 or 5,1 for slot 5,
drive 1), or the name of the volume to mount. If only a slot is given, mount
attempts to mount the devices in both drives for that slot.

Examples:

mount /foo /bar

Mounts the volumes /foo and /bar.

mount 3.2 /ram5 6

Mounts the volumes in slot 3, drive 2, /ram5, and both volumes in slot 6.

Information for each unmounted volume is maintained in a resource file. This
information is necessary in order to put unmounted volumes back online. The mounting
information is valid as long as there have not been any changes in the location of disk
devices in the system’s slots. If interface cards move around, the resource file must
be deleted.

Diagnostics
‘‘mount.rsrc not found’’ -- the resource file was not found; unmount has not yet been
run to unmount a volume.

‘‘volume is already online’’ -- the volume specified is mounted.

‘‘volume not in mount.rsrc’’ -- the volume name given is not found in the resource
file.

‘‘no mount info for device’’ -- the device given has no mount information; the device
hasn’t been unmounted.

Files
$/etc/rsrc/mount.rsrc - mount resource file.

See Also
df(C), unmount(ADM)

1 Printed 22 Feb 03Revised 2 May 1992

ProLine System Administration NOTICE(ADM)NOTICE(ADM)

Name
notice - Display a notice

Syntax
notice

Description
Notice is used to display a file that resides in the $/etc/notices directory. The
file displayed is the name of the command. For example, if the notice command were
entered at the shell, $/etc/notices/notice would be displayed. If the notice program
were copied to $/bin/readme, then by typing readme in the shell, the
$/etc/notices/readme file would be shown.

This program is useful for temporarily replacing other programs so that when a user
tries to invoke what appears to be an application, the notice is displayed instead.

1 Printed 22 Feb 03Revised 16 May 1992

ProLine System Administration RC(ADM)RC(ADM)

Name
rc - Command script for automatic restart

Syntax
$/etc/rc

Description
Rc is a command script that controls the restart process after the system has been
rebooted. When the system is restarted and successfully initialized, control is passed
to the rc script, which runs under csh. Rc performs its tasks, chains to rc2 is
present in $/etc, and when done, control returns to login which waits for system
events.

Rc2 typically contains commands that prepare the system for proper operation, such as
copying files from fixed disk drives into faster RAM disks, mounting and/or unmounting
devices, system maintenance, and so on. Rc should not be modified if possible.
Rc2 can be modified as desired.

The runtime performance of many applications can be increased by copying key files from
a relatively slow fixed disk into a high-speed RAM disk. The path to a RAM disk is
normally assigned to the shell variable ‘‘tmpdir’’. So, rc2 may begin by copying the
following files as shown:

echo rc: copying files to $tmpdir
cp $/etc/aliases $tmpdir # for sendmail
cp $/etc/paths $tmpdir # for sendmail
cp $/etc/plush.m $tmpdir # for plush
cp $/bin/plush $tmpdir # for plush
cp $/etc/cshrc $tmpdir # for csh
cp $/bin/cshx $tmpdir # for csh
cp $/bin/csx $tmpdir # for cs
cp $/sys/modules/parse $tmpdir # for shells
echo rc: file copying completed

Check the manual entries for other applications to see if they take advantage of having
their files reside on a RAM disk.

See Also
boot(ADM), csh(C), scripts(M), startup(ADM)

1 Printed 22 Feb 03Revised 30 March 1994

ProLine System Administration RMCONF(ADM)RMCONF(ADM)

Name
rmconf - Remove a conference

Syntax
rmconf

Description
Rmconf is a shell script that removes a conference and all of its messages from the
conference system. It asks for the prefix to the conferencing area (i.e.,
‘‘/hd0/cs’’), and then asks for the name of the conference to remove (i.e.,
‘‘rumors’’).

Rmconf first removes the descriptive entry of the named conference from the
Conference Listing file. You are then asked if you’re ready to remove all the messages
in that conference, and if so, type ‘‘y’’ followed by a carriage return. Any other
response will cancel rmconf.

The entire conference and its associated topics are removed.

Files
$/sys/pcs/cs.list - description file of conferences.

See Also
cs(C), cs.maint(C)

1 Printed 22 Feb 03Revised 2 May 1992

ProLine System Administration RMTOPIC(ADM)RMTOPIC(ADM)

Name
rmtopic - Remove a conference topic

Syntax
rmtopic [conf/topic]

Description
Rmtopic is a simple way to remove topics from conferences in the Conference System.
It can be invoked as an interactive program, or as a command with arguments

To invoke rmtopic as an interactive program simply type rmtopic with no arguments.
You will be prompted with a list of the current conferences and asked which conference
you wish to remove a topic from. If there is only one topic in the conference,
rmtopic will print an error message and end otherwise you will be shown a list of the
current topics and prompted for the name of the topic to remove. Rmtopic will then
delete the topic. In this mode, rmtopic can be aborted by simply pressing RETURN at
any prompt or by pressing your cancel key.

If a conf/topic argument is supplied, it must be in the correct form -- the name of
the conference, a slash (‘/’) and the name of the topic. For example, if you wanted to
remove the topic ‘‘stuff’’ from the ‘‘chatter’’ conference the argument would be
‘‘chatter/stuff’’.

In all cases, rmtopic will not attempt to remove a topic if it does not exist.
Rmtopic will not remove the last topic in a conference, instead you will be prompted
to use rmconf. Also, rmtopic will abort with an error message if the conference
specified does not exist.

Note
In some cases, adding and/or removing topics can mess up the user’s last read message
pointers.

See Also
cs(C), cs.maint(ADM), csmod(C)

Author
Daniel Davidson. Bugs or suggestions should be sent to danield@pro-grouch.

1 Printed 22 Feb 03Revised 2 May 1992

ProLine System Administration RMUSER(ADM)RMUSER(ADM)

Name
rmuser - Remove users

Syntax
rmuser [-p] [-f file] user ...

Description
Rmuser removes accounts from the system’s password file, and deletes the user
directories and any system files (mail, etc) associated with the user. More than one
user can be removed by specifying multiple names.

To remove many users, the a list of names to be read from a disk file by using the -f
option followed by the name of the file containing the list. This file must be
formatted such that each line starts with the login name of the user to remove. If
there is any more text on the same line following the name, a tab or space character
must separate it.

If the -p option is given, progress information is displayed as it works.

Files
$/adm/* - system storage for user’s data files,
$/usr/* - user’s home directory,
$/sys/mail/* - user’s mailbox.

See Also
flip(ADM), maint(ADM)

1 Printed 22 Feb 03Revised 2 May 1992

ProLine System Administration STARTUP(ADM)STARTUP(ADM)

Name
startup, proline - ProLine configuration and startup

Description
ProLine is launched by running the Startup program which resides in the system’s root
directory ($/). This program automatically senses an active ProLine configuration and
engages auto-start mode to bring up the ProLine system. If the system is not
configured, it goes directly into the ProLine Installer Menu.

During the auto-start period, the administrator can press ESC to abort auto-start and
go to the Installer menu, or press RETURN to immediately launch ProLine. After a short
period of no activity, auto-start runs the system in a turn-key fashion by running the
ProLine program also in the system’s root directory ($/).

ProLine begins by obtaining the system configuration from the resource file
$/etc/rsrc/startup.rsrc. Then it loads in required system modules, creates any
directories not present in the locations in which they’re expected, and initializes the
modem.

If the modem fails to initialize properly after two attempts, an alarm sounds at the
console, and the operator is prompted with:

(A)bort, (I)gnore, (R)etry:

Choosing (A)bort cancels ProLine. (I)gnore tells startup to ignore the failed
attempt and continue. (R)etry allows ProLine to try again. If operator intervention
does not occur within 30 seconds, ProLine automatically chooses (R)etry.

After initializing the modem, ProLine determines if the shell script $/etc/rc exists.
If so, ProLine launches the C-Shell ($/bin/csh) and has it execute the $/etc/rc
script. Typically, this script includes commands that complete the system setup.

Eventually, control is passed to $/bin/login. Login handles system events such as
answering calls, user logins, cron tasks, and so on.

Startup Resource File

The startup.rsrc file begins with a count-prefixed list of modules required by ProLine.
These modules provide ProLine with basic telecommunications abilities and utilities.
Example:

6
Store|GS
ModemWorks
Time|GS
Serial|GS
Console
Modem

1 Printed 22 Feb 03Revised 30 March 1994

ProLine System Administration STARTUP(ADM)STARTUP(ADM)

The pipe character (|) used before ‘‘GS’’ with some modules allows ProLine to
automatically select the Apple IIGS version of the module if ProLine is running on an
Apple IIGS. See the file $/sys/modules/contents for a description of each module. A
count-prefixed list offers the flexibility of loading additional modules.

Following the list comes these items, each on its own line:

modemcap The name of a modemcap (modem capability) file is given. Modemcap files
reside in $/sys/modemcaps. See $/sys/modemcaps/contents for a
description of each file.

slot The slot number of the port to use.

speaker A code regulating the attributes of the modem’s speaker (3=off, 4=on
only during connections, 5=always on).

printer The name of a Printer module.

printer slot The slot of the printer.

host name The name of the host system (e.g. ‘‘pro-sol’’).

domain The Internet domain by which the host is governed (e.g. ‘‘.cts.com’’).
For new systems that have not processed a site map, nor have received a
paths database, this line should be left blank.

admin’s login The login name of the administrator.

admin’s name The full name of the adminstrator.

time zone The three-letter time zone.

temp dir The path to a directory in which temporary files are created and
deleted by the system (e.g. ‘‘tmp’’). A RAM disk is perfect for this.
Do not use the root directory of any volume, as a volume directory has a
limitation of 51 files (the /RAM volume, only 12 files). Always specify
a path to a subdirectory on that volume (e.g. ‘‘/ram5/tmp’’).

spool dir The path to a directory in which logs, mail and network news files are
temporarily stored for processing (e.g. ‘‘spool’’). Using a large RAM disk
(e.g. ‘‘/ram5/spool’’) can dramatically improve system performance and
avoid excess wear on drives. Note, however, that RAM disks that aren’t
battery-backed are volatile and can be destroyed in the event of a power
failure. A RAM disk may also limit the amount of mail and news that can
be processed due to its size, causing system errors. It may be best to
choose a directory on fixed media.

ProLine will create the temporary and spool directories if they are not present
during startup. Any unqualified paths (ones that do not start with a slash) are assumed
to be located in the ProLine root directory.

2 Printed 22 Feb 03Revised 30 March 1994

ProLine System Administration STARTUP(ADM)STARTUP(ADM)

Files
$/etc/rsrc/startup.rsrc - startup resource file.

See Also
boot(ADM), login(C), rc(ADM)

3 Printed 22 Feb 03Revised 30 March 1994

ProLine System Administration SYNCTIME(ADM)SYNCTIME(ADM)

Name
synctime - Synchronize clock to an atomic time reference

Syntax
synctime

Description
Synctime sets the system clock to the National Institute of Standards and Technology
(NIST) Time Mark Generator Device, an atomic standard in Fort Collins, Colorado.
Synctime synchronizes itself with the service, sets the system clock, and adjusts the
time zone (if necessary), all during a 15 second phone call. The service is available on
a three-line hunt group at (303) 494-4774. Each of the three lines has its own Time
Code Generator Device linked to the NBS 9 cesium beam atomic frequency standard used as
a time base at NIST.

This ‘‘atomic clock’’ is accurate to one second in 300,000 years. Since data sent
through the phone system takes time arrive, the service employs a communications delay
correction feature. This allows the received time to be accurate within milliseconds.

Synctime requires a resource file in the $/etc/rsrc directory called
‘‘synctime.rsrc’’. The resource file’s format follows this example (comments are shown
next to each line):

1-303/494-4774 # NIST number
1200 # Dialup speed
-8 # Hour difference from UTC
PST # Standard time zone
PDT # Daylight savings time zone
1900 # Year 0 of this century

Time information is sent in Universal Coordinated Time (UTC) format, also known as
Greenwich Mean Time (GMT), the world time at the zero meridian.

The time zone difference you enter will offset the UTC time and date received and set
your clock to your local time. In places such as Newfoundland where the time
difference contains a fraction of an hour, use ‘‘-3.5’’. If you are in California, use
‘‘-8’’. In New York, use ‘‘-5’’.

The next two lines in the resource file give the three-letter time zone abbreviations
for your location, starting with standard time. Some areas of the nation do not make
use of daylight savings time, so enter the standard time zone abbreviation on both
lines.

The last resource line holds year 0 for the current century (e.g. 1900). This value
must be adjusted every 100 years. You may have to adjust it only once in your
lifetime.

As synctime proceeds, it writes progress information to the console, and keeps a log
of the events as they happen. (The log is mailed to ‘‘root’’ when synctime is done).
Synctime reports the number of seconds the clock was off, the newly set time
according to the atomic clock reference, and the number of days, if fewer than 50,

1 Printed 22 Feb 03Revised 2 May 1992

ProLine System Administration SYNCTIME(ADM)SYNCTIME(ADM)

before a daylight savings or standard time adjustment. It also updates the time zone,
if necessary.

Files
$/etc/rsrc/synctime.rsrc - resource file,
$/etc/rsrc/startup.rsrc - holds current time zone abbreviation.

2 Printed 22 Feb 03Revised 2 May 1992

ProLine System Administration TC(ADM)TC(ADM)

Name
tc - Termcap editor

Syntax
tc [termcap]

Description
Tc is used to create or edit terminal capability (termcap) files. It uses a
full-screen editor to make editing easy. The editing screen consists of four parts:
the termcap code grid, the command menu, the mode line, and the function list.

The termcap code grid holds the raw emulation codes (shown in hexadecimal). Use the
cursor keys to move around the grid. The cursor keys are Control-H for left, Control-U
for right, Control-K for up, and Control-J for down. You can also use the inverted
T-pattern of the 1, 3, 5, and 2 keys on a numeric keypad.

The mode line, below the grid, is the status display. It shows various settings and
other information. Sections in the mode line are:

ANSI: Y = ANSI-style emulation sequences.
N = non-ANSI emulation sequences.

VT52: Y = VT52-style screen clear sequence.
N = Normal screen clear sequence.

Leadin: ASCII code (in decimal) of the lead-in prefix.

Row: Terminal’s home row in decimal.

Curs: Order of coordinates sent with the GotoXY function, plus the offset added to
each coordinate sent.

Pos: Current position in the grid, shown in hex, decimal, and the corresponding
character on ASCII chart.

Sup: This flag represents character suppression for the ASCII character that
corresponds to the current grid position.
Y = the character is never displayed on the local console.
N = the character can be sent to the local console.

Pfx: This flag determines if the lead-in prefix is required for the emulation code
at the current grid position.
Y = lead-in prefix required.
N = lead-in prefix not required.

The function list consists of the following:

Unused = no function
GotoXY = move cursor to X,Y coordinates
ClrScrn = clear the entire screen
ClrEOS = clear from cursor to end of screen

1 Printed 22 Feb 03Revised 24 July 1992

ProLine System Administration TC(ADM)TC(ADM)

ClrEOL = clear from cursor to end of line
InsLine = insert a line
DelLine = delete a line
InsChar = insert a character
DelChar = delete a character
Home = move cursor to the home position
Beep = beeps
CR = move cursor to start of line
Inverse = turn on inverse mode
Normal = turn off inverse mode
ScrllUp = scroll screen up
ScrllDn = scroll screen down
Up = move cursor up
Down = move cursor down
Right = move cursor right
Left = move cursor left
SoftTab = move cursor to next tab stop
HardTab = print spaces to next tab stop
EraseLn = erase entire line
InsOn = turn on insert mode
InsOff = turn off insert mode
UndLnOn = turn on underline mode
UnLnOff = turn off underline mode
MsTxtOn = turn on MouseText mode
MsTxOff = turn off MouseText mode

Tc recognizes the following single-character commands:

n New -- switch to a new termcap or create one from scratch. You’re asked to enter
the name of the termcap file. If you enter only a filename (no "/" characters),
tc assumes that the termcap resides in $/sys/termcaps. Otherwise, tc uses the
explicit pathname given.

w Write -- save the termcap file. You can use the default pathname, or enter a new
one.

q Quit -- exit tc.

f Function -- assign a function to the code at the current grid position. The
function list entries hilite as the cursor keys are used to move around the list.
When the desired function name is selected, press RETURN.

p Prefix -- toggle the lead-in prefix requirement for the code at the current grid
position.

s Suppress -- toggle the local console character suppression flag for the ASCII
character represented by the current grid position.

’ Find Character -- move to the location in the grid that represents the ASCII value
of the character entered.

2 Printed 22 Feb 03Revised 24 July 1992

ProLine System Administration TC(ADM)TC(ADM)

Find Decimal -- move to the location in the grid based on the decimal value
entered.

$ Find Hex -- move to the location in the grid based on the hex value entered.

a ANSI -- toggle ANSI emulation sequences. When toggled on, emulation sequences
follow the ANSI standard (ESC followed by [and a command letter, plus any
arguments). This mode is used for ANSI-BBS and VT100 emulation. Terminals such as
VT52 and Televideo 912 do not use ANSI sequences.

c Cursor Offset -- set the offset added to X and Y coordinates when used in GotoXY
sequences. Many terminals add 32 to X and Y coordinates.

h Home Row -- set the home row. The home row for most terminals is at the top of
the display. A few terminals use the bottom line.

l Lead-in Prefix -- set the ASCII code of the lead-in prefix, usually 27. Some
non-ANSI terminals do not use a prefix for commands; they simply use control
codes.

v VT52-Style Screen Clear -- toggles VT52 screen clearing mode. When on, a ClrScrn
sequence becomes two separate sequences: GotoXY to the top left corner of the
screen, followed by ClrEOS. Most terminals require only a single sequence to clear
the display.

x XY Order -- toggles XY or YX order for GotoXY coordinates.

The arrow keys or numeric keypad keys, as presented earlier, are used for navigation in
the termcap code grid and the function list. Pressing Control-L redraws the entire
display.

Files
$/sys/termcaps/* - termcap files.

Author
Morgan Davis (mdavis@pro-sol.cts.com)

See Also
setenv(C), stty(C), tset(C)

3 Printed 22 Feb 03Revised 24 July 1992

ProLine System Administration UNMOUNT(ADM)UNMOUNT(ADM)

Name
unmount - Unmount disk devices

Syntax
unmount device ...

DESCRIPTION
Unmount removes the selected disk devices from the operating system’s active device
list. This has the effect of making a volume temporarily disappear.

A device argument consists of a slot and drive specifier (e.g. 5.1 or 5,1 for slot 5,
drive 1), or the name of the volume to unmount. If only a slot is given, unmount
attempts to unmount the devices in both drives for that slot.

Examples:

unmount /foo /bar

Unmounts the volumes /foo and /bar.

unmount 3.2 /ram5 6

Unmounts the volumes in slot 3, drive 2, /ram5, and both volumes in slot 6.

Unmount maintains information for each unmounted volume in a resource file. This
information is used by mount in order to put unmounted volumes back online.

Diagnostics
‘‘volume not online’’ -- the volume specified is not presently online.

‘‘cannot unmount active device’’ -- devices in use by the ProLine filesystem may not be
unmounted.

‘‘no volume mounted on device’’ -- no volume exists on the specified device.

Files
$/etc/rsrc/mount.rsrc - mount resource file.

See Also
df(C), mount(ADM)

1 Printed 22 Feb 03Revised 2 May 1992

ProLine System Administration UPDATES(ADM)UPDATES(ADM)

Name
updates - How to install software updates

Description

ProLine updates may include a number of programs (and their manuals). To make
transferring many files as efficient as possible, the updated files are stored in an
archive created with the ProLine Archive (par) program. The update file, ending with
a ‘‘.par’’ extension, is distributed over the ProLine network to the system
administrator at each site.

To install an update, the administrator follows these three easy steps:

1. Login, and change directories to $/ with this command:

cd $/

2. Invoke the unpar command on the archive (residing in the administrator’s
directory):

unpar -r ~/update.par

The name of the .par file varies from update to update, but always ends with
‘‘.par’’.

3. Reboot the system to begin a new ProLine session:

boot -r

The administrator should move the ProLine update archive offline to a safe place (e.g.
a backup disk).

Compressed Update Archives

If an update consists of an enormous amount of data, it is usually compressed using a
utility such as ShrinkIt. These updates are sent out with a ‘‘.shk’’ extension and
must be decompressed into the resulting ‘‘.par’’ file before the steps above can be
taken.

Encoded Update Archives

If an update is distributed with a ‘‘.uu’’ suffix, it indicates that it must be decoded
using the uudecode program first. A ‘‘.par.uu’’ or ‘‘.shk.uu’’ ending means an
archive is contained in the uuencoded file.

See Also
unpar(C), uudecode(C)

1 Printed 22 Feb 03Revised 30 March 1994

ProLine

General Commands

Copyright 1994 Morgan Davis Group

ProLine General Commands ADD(C)ADD(C)

Name
add - Append files

Syntax
add file... target

Description
Use add to append one or more files to a target file. The source file(s) may be in
another directory, in which case a path must be given.

If the target is a directory, the source files are added to files in the
directory using their original filenames.

If the target file does not exist, it is created, and the contents of the source
files are appended.

If a source file is given, but no target file argument, the current working
directory is assumed as the target area, preserving the original filename, though add
refuses to add a file to itself.

Example

add stratos.5 ../mdavis/stratos.novel

This adds the file ‘‘stratos.5’’, assuming the current directory is $/usr/brin, to the
file ‘‘stratos.novel’’ in the ‘‘$/usr/mdavis’’ directory. If ‘‘stratos.novel’’ was
omitted, the original filename ‘‘stratos.5’’ would have been used.

See Also
cat(C), cp(C), mv(C)

1 Printed 22 Feb 03Revised 5 May 1992

ProLine General Commands ALIAS(C)ALIAS(C)

Name
alias, unalias - Alias or unalias command names

Syntax
alias [name value]
unalias name...

Description
Without arguments, alias displays a list of the currently defined aliases. With
arguments, alias associates name with the following value. The shell applies all
transformations on the command line, notably the value assigned to the alias.
Therefore, care must be taken when using alias so that the resulting value is
stored as desired.

Example:

alias ls ls -F
alias bye "echo It’s \$date[4]; logout"

Whenever ‘‘ls’’ is entered, the shell expands it to ‘‘ls -F’’. In the second example,
‘‘bye’’ is replaced by two commands. Remember that values assigned to aliases pass
through all transformations twice: once when the alias is defined, and a second time
when the alias is actually used. This includes character escaping, control character
insertion, and variable expansion. See csh(C) for a dissertation on avoiding variable
expansion when it isn’t desired.

Note that alias only affects the very first argument. If you typed the command ‘‘echo
bye’’ you would see ‘‘bye’’ printed on your screen, not ‘‘logout’’.

Argument Insertion

Alias values can contain special characters that indicate where command line arguments
should be inserted. They are:

!^ Inserts the first argument

!$ Inserts the last argument

!* Inserts all arguments

Here’s an example:

alias test "echo !\^"

Note: The caret character denotes special control code insertion. To include the caret
literally, it has to be escaped with a backslash.

Entering ‘‘test’’ followed by one or more arguments causes the shell to first replace
it with the ‘‘echo’’ command, and then takes the first argument following ‘‘test’’ and
makes it the only argument to the ‘‘echo’’ command. Example:

1 Printed 22 Feb 03Revised 5 May 1992

ProLine General Commands ALIAS(C)ALIAS(C)

test fizbin data compression
fizbin

Alias substitutions may contain multiple argument insertion sequences, and the new
command line will be built using the appropriate arguments from the original command
line.

Changing and Removing Aliases

Old aliases can be changed with the alias command by reentering them with new values.

To remove an alias, use unalias followed by one or more alias names.

See Also
csh(C)

2 Printed 22 Feb 03Revised 5 May 1992

ProLine General Commands BANNER(C)BANNER(C)

Name
banner - Print message using big letters

Syntax
banner [options] message ...

Description
Banner prints a large message to your screen. Each argument is displayed on a new
line by itself. To get multiple words and spaces to print on the same line, enclose
them in quotation marks.

Options are:

-b Boldface. The character that makes up the ‘‘pixel’’ of each part of a letter
is doubled, giving a wide, boldfaced effect.

-c # Sets the character that constitutes a letter’s ‘‘pixel’’. By default, the
pixel is the pound-sign (#). Using ‘‘-c *’’ would change it to a star.

-m Monospace. Each letter occupies a fixed width. By default, banner displays
letters in a proportionally-spaced format.

Example:

banner Stupid!

 ### # # # #
 # # # # #
 # #### # # #### ## #### #
 ### # # # # # # # # #
 # # # # # # # # # #
 # # # # # ## #### # # #
 ### ## ## # # ### #### #
 #

If the last argument given to banner begins with ‘>’, it redirects the output to the
filename that follows.

Files
$/sys/modules/banner - banner maker module

1 Printed 22 Feb 03Revised 5 May 1992

ProLine General Commands BASIC(C)BASIC(C)

Name
basic - BASIC interpreter

Syntax
basic [-l file]

Description
Basic invokes the BASIC interpreter. The number of free bytes in memory available is
displayed, along with the parent process name of the interpreter which invoked it. This
is reported so that the user can reinstate the original shell interpreter when done in
BASIC.

If the optional -l flag is used with the name of a BASIC program, the program will be
loaded automatically.

Note
Basic can only be executed by root-level users. Once invoked, the ‘‘Unauthorized
BASIC Entry’’ feature is disabled so that remote operations in BASIC are allowed.
Normally, should the system land into BASIC with the this feature enabled, the system
shuts down automatically, terminating the caller’s connection, and reboots.

Warning
It is possible to issue certain commands from BASIC that might crash the system.
Internal and external shell commands cannot be executed from BASIC.

1 Printed 22 Feb 03Revised 5 May 1992

ProLine General Commands CALENDAR(C)CALENDAR(C)

Name
calendar - Personal calendar

Syntax
calendar [-e] [eventfile]

Description
Calendar reminds you of upcoming events. The events are displayed when calendar is
called, usually from the login script.

To set up a list of events, you must create a file called ‘‘events’’ in your user
directory. Example:

DOW Dy Mon Yr
*** 15 Aug **
National Frozen Pizza Day
Wed! ** Sep **
Dart League, 11:30 PM
+10! 31 Oct **
Start working on Halloween costume
***! 7 Dec **
File:daves.birthday
END

The first line must be included exactly as shown, or calendar will ignore the
entire file. Each event entry consists of two lines, a date line and a message line.
The date line can include wildcard characters for a ‘‘don’t care’’ situation. The date
line must be formatted exactly as shown, or that event will be ignored. A maximum of 99
events can be stored.

In the example above, the first event is to occur on August 15th, with the day of week
and year ignored. If calendar is called on August 15th, the message ‘‘National
Frozen Pizza Day’’ will be displayed.

If calendar is called on any Wednesday in September, the second event is triggered,
and the message ‘‘Dart League, 11:00 PM’’ is displayed.

The third event is an example of look-ahead. The first character on the date line is a
‘‘+’’, followed by the number of days advance notice required (up to 99). In the
example, the message ‘‘Start working on Halloween costume’’ will be displayed every day
between October 21 and October 31, along with a countdown of the number of days until
the event occurs. After October 31, the message will no longer be displayed.
Wildcards may be used in combination with look-ahead. When wildcards are used with
look-ahead, calendar will check the following month or year if appropriate. For
example:

+10! 5 *** **
Pay phone bill

1 Printed 22 Feb 03Revised 6 May 1992

ProLine General Commands CALENDAR(C)CALENDAR(C)

This event would be displayed from about the 25th of the month (depending on which
month) through the 5th of the following month. If the current date is December 31, ‘‘5
days until:’’ will be displayed, since calendar will look past the end of the year.

The last three examples show a feature new to v1.5 - auto-delete. If the fourth
character of the date line is a ‘‘!’’, the event will be saved after it is displayed.
If the ‘‘!’’ is missing, the event will be deleted after it is displayed. For
look-ahead events, the event will not be deleted until the actual date occurs.

The last line of the file must be ‘‘END’’ by itself, or calendar will give an error.

The ‘‘events’’ file can also be created and edited with the built-in editor. To use the
editor, invoke calendar with the -e parameter. The editor is quite self-explanatory.

Version 1.6 includes an improved editor and adds two new features: alternate eventfile,
and textfile display.

The alternate eventfile works just like the main one, except the filename must be used
when calling calendar. Simply use ‘‘calendar alt.events’’ or ‘‘calendar -e
alt.events’’. The alternate events file may use any legal filename, and there is no
limit to the number of alternate files.

The textfile display feature allows you to display any textfile as the message for a
given event. This makes it easy to add multiple events for a particular day, or to make
a special sign. To use this feature, enter ‘‘File:filename’’ as the message text for
that day (as shown in the fourth example).

Files
$/usr/*/events - User’s default event list.

Author
David Zachmeyer. Bug reports or suggestions should be sent to djz@pro-phc.

2 Printed 22 Feb 03Revised 6 May 1992

ProLine General Commands CALLS(C)CALLS(C)

Name
calls - Report system usage

Syntax
calls [options]

Description
Calls displays useful statistics about the system. Depending on the options
selected, a variety of reports can be generated.

Options are:

-f file Process the syslog file specified by the file argument instead of
$spool/logs/syslog.

-u User report. Provides information for all users that have called the system.

-s Statistics report. Shows statistical information such as idle time,
percentage of calls based on baud rate, percentage of system uptime used by
certain baud rates, etc.

-t Time report. Draws a bar chart for the current 24 hour period, showing the
frequency of usage during each hour of the day.

If no report type is specified, calls displays all reports.

Notes
Output can be redirected to a file if >file is given as the final argument.

Calls cannot process syslog files that go into another year.

Files
$spool/logs/syslog - file containing daily login entries

See Also
log(C), uutraf(NET)

1 Printed 22 Feb 03Revised 16 July 1992

ProLine General Commands CAT(C)CAT(C)

Name
cat - Concatenate and print

Syntax
cat file ...

Description
Typically, cat is used to show the contents of a file. Any type of file can be
displayed, but files containing ASCII text produce the only meaningful results.

Example:

cat login

This displays the contents of your login script. More than one file can be shown by
giving cat a list of file names.

Cat can be used to redirect a file to another file or device, including appending
output to existing files (hence, concatenation). Examples:

cat net.report >.printer
cat intro userlist contacts >>memo

The first example sends the net.report file to the printer device. The second example
appends the files intro, userlist, and contacts, to the end of memo.

See Also
grep(C), lpr(C), more(C), tail(C)

1 Printed 22 Feb 03Revised 6 May 1992

ProLine General Commands CD(C)CD(C)

Name
cd - Change working directory

Syntax
cd directory

Description
Cd is used to change directories. After logging in, the working directory is set to
your home directory. From there, you can change to any directory by typing:

cd directory

If directory is a partial path (does not begin with the root directory), cd looks
downwards from where you are for the directory to change to.

Short Cuts

cd Without arguments, cd puts you in your home directory (same as typing ‘‘cd
$home’’).

cd / Changes to the root directory.

cd $/ Changes to the ProLine system directory.

cd .. Changes to the parent directory of the current working directory.

cd ~/bin Changes to the bin directory residing in your home directory. (The tilde
character is the same as $home).

See Also
pwd(C)

1 Printed 22 Feb 03Revised 6 May 1992

ProLine General Commands CHAT(C)CHAT(C)

Name
chat - Chat mode

Syntax
chat [-r rings] [-t] [-v volume]

Description
Chat lets a caller and the system operator carry on conversation in real time. Upon
invoking chat, an audible signal (much like a telephone) rings on the host computer.
If the operator is available, the chat request is serviced, placing the user and the
operator into a chat mode. If the operator is not available, the user is given the
chance to send an electronic mail letter instead.

Depending on the type of terminal the user emulates, one of two chat modes may be
invoked. Both modes offer word wrap and limited text editing.

With terminal emulation, a split-screen mode is activated. The user and operator have
their own windows in which to type messages unencumbered by the other’s input. In
fact, each may type at the same time without interrupting the other. Typing Control-L
redraws the entire screen. Typing Control-X clears the user’s or operator’s assigned
window. Pressing the Escape key exits the chat program.

If no terminal emulation is set up, a regular chat loop is activated. In this mode, the
user and operator must take turns entering lines of text so as not to ‘‘step on’’ one
another. Standard chat protocol in this method involves pressing RETURN enough times
to put at least one blank line after a typed message is completed. This signals the
other user that a response is expected. Entering a period alone on a new line exits the
chat program.

The options are:

-r N Rings (default = 6), where N is the number of ‘‘phone rings’’ that sound
before chat gives up.

-t TTY mode (no split-screen emulation), even if adequate emulation is enabled.

-v N Volume level (default = 7), where N is a number from 0 (quiet) to 15
(loudest) which controls the loudness of the ringing signal at the console.
Only the super user may specify this option.

Operator’s Note

To regulate chatting times, hooking up a joystick or game paddle to the computer
provides an ‘‘availability switch’’. Moved to the left, chatting is disabled (you have
‘‘left’’). Moved to the right, chatting is enabled (you are ‘‘right’’ there).

1 Printed 22 Feb 03Revised 6 May 1992

ProLine General Commands CP(C)CP(C)

Name
cp - Copy a file

Syntax
cp file... [target]

Description
Cp copies one or more files to another file or directory. The source file may be in
another directory, in which case a path must be given.

If the target is a directory, the source file(s) are copied to files in the
directory using their original filenames.

If the destination file does not exist, it is created, and the contents of the source
files are copied.

If a source file is given, but no target file, the current working directory is
assumed as the target area, preserving the original filename, though cp refuses to
copy a file to itself.

Example:

cp $/usr/jholt/rocks garbage

This copies ‘‘rocks’’ from $/usr/jholt to the file ‘‘garbage’’ in the current working
directory. If ‘‘garbage’’ was omitted, the original filename ‘‘rocks’’ would have been
used.

See Also
add(C), cat(C), mv(C), rcp(NET)

1 Printed 22 Feb 03Revised 6 May 1992

ProLine General Commands CS(C)CS(C)

Name
cs - Conference System

Syntax
cs

Description
The cs command invokes the conference system. It is called a ‘‘conference system’’
instead of a ‘‘bulletin board’’ or ‘‘message base’’ because active participation by
system members is encouraged.

The conference system is where system members gather to discuss a variety of topics in
open or closed forums. Networked conferences can include offsite participants,
expanding the forums to users on computer systems around the world.

This tutorial will help you master the operation of CS in just a few minutes. First,
all you really need to know to get around in the conference system is the RETURN (or
ENTER) key. When you press RETURN, you are taken from one unread message to the next,
from one topic to another, and so on.

Of course, if you find yourself wondering what to do next, you can type the question
mark key (?) and a list of available commands or responses will be shown.

About Conferences and Topics

Each conference is dedicated to the discussion of one particular subject. For example,
music. Within the ‘‘music’’ conference, there may be one or more subconferencing
areas, called topics. Topics for the ‘‘music’’ conference might be ‘‘concerts’’,
‘‘discs’’, ‘‘reviews’’, and so on.

Conferences come in two flavors: Open and Closed. An Open conference is one that
anyone can join, while a Closed conference is by invitation only.

There are two kinds of topics, too: Local and Networked. Local topics are those in
which only local system members participate. Networked topics let the whole world in
on the act! People from remote sites, sometimes as far away as the other side of the
world, exchange messages in networked topics.

Getting Started

Your first step in using the conference system will be to join conferences that
interest you, then read some or all of the existing messages, respond to them, and add
your own to the discussion.

There are three main areas in the conference system:

cs> Select and work with conferences and topics.

1 Printed 22 Feb 03Revised 6 May 1992

ProLine General Commands CS(C)CS(C)

read> Read messages and switch topics in a conference.

add> Enter text to create a new message.

You can get a detailed list of commands at each prompt by pressing ‘‘?’’.

Joining A Conference

When you first enter CS, press RETURN to join the first conference with new messages
since your last visit. If there are no new messages, you can choose to join a
conference by using the (J)oin command.

Reading Messages

Once you’ve joined a conference and entered into a topic area, press RETURN to being
reading new messages. Popular commands at the read> prompt are:

Next Display the next unread message.

Next takes you from one unread message to the Next. When you run out of
unread messages in one conference/topic, Next takes you to the next
conference you’re joined to with unread messages.

Skip Change your unread message pointer.

If you’ve joined a new conference that has an over- whelming number of unread
messages, you may choose not to read them all. Use Skip to skip over
messages you don’t want to read.

Add Add a new message to the conference/topic.

Add allows you to add a brand new message. You’re asked to describe the
subject of your message, and then you can begin writing it. This takes you
to the add> prompt.

Reply Reply to a message.

Like Add, Reply lets you contribute to the discussion. Use this command when
you want to continue an ongoing discussion.

There are many more commands than those listed above. Type ‘‘?’’ at the read> prompt
to see the complete listing of available commands.

Adding or Replying

When you Add or Reply to a message, you’re asked to enter the ‘‘Subject’’ of your
contribution. Type in a brief description that summarizes what your message is about.

2 Printed 22 Feb 03Revised 6 May 1992

ProLine General Commands CS(C)CS(C)

Next, type in your message. As with a pad of paper, you can write out your comment and
edit it before you add it to the discussion. If you make a mistake in the line you are
presently typing, you can backspace and correct it. If you want to make a change in an
earlier line, finish the note and edit it later.

When done entering text, type a period on a new line and press RETURN. This takes you
to the add> prompt where you can save or edit your message, as well as other options.

Now You’re Ready!

You now know enough about CS to use it effectively. Remember that you can always use
‘‘?’’ if you need to see a list of available commands no matter where you are. If you
ever get into a situation that you wish you could get out of, use your Cancel Key
(usually Control-C). Call upon the system administrator or one who is knowledgeable
with the operation of the system if you find you need further assistance.

Quick Start Checklist

Upon entering CS, you may want to:

1. Use (L)ist to see a listing of available conferences.

2. Then use (J)oin to subscribe to a conference that interests you.

3. Finally, just keep pressing RETURN to read each unread message in succession until
there are no more.

Happy Conferencing!

Files
$/bin/csx - CS core program (loads faster from a RAM disk),
$/sys/pcs/cs.herald - Initial greeting upon entering cs,
$/sys/pcs/cs.list - list of conferences with descriptions,
$/etc/rsrc/cs.rsrc - CS resources,
$/etc/default/csdata - list of default conferences users join,
$/adm/*/csdata - data files for each cs member,
$/etc/help/* - help files for CS commands.

See Also
cs(F), cs.maint(C), csmod(C), postnews(C)

3 Printed 22 Feb 03Revised 6 May 1992

ProLine General Commands CSH(C)CSH(C)

Name
csh - Command shell

Syntax
csh [-c] [command]

Description
Csh is a command interpreter. Without any arguments, csh goes through a normal
startup procedure, eventually giving you a command line where you can enter more
commands.

If csh is invoked with a command argument, it processes that command and exits when
finished. If the -c flag is included, csh processes the command, but does not exit.
If only -c is given, the shell immediately presents a command line for entering
commands (it does not run your login script, described later).

About The Shell

Csh is the central program from which all other programs can be accessed. It is often
called a command interpreter, acting as a liaison between you and the system. To
instruct the system to perform a task, you enter your request on a command line. The
shell processes the command line to carry out your request by means of a built-in shell
function, or by selecting a program external to the shell to complete the request. The
shell contains many internal functions for use in the shell environment. There are even
more external programs that can be called upon from the shell. After a command line is
processed, the shell prompts you for additional commands until you’re ready to quit.

The shell can also process a series (or batch) of commands contained in a file, as if
they had been entered by hand on the command line. Files containing shell commands are
called shell scripts. Scripts use special features to control the execution of
commands in a way that reduces arduous tasks into simple, automated procedures. More
on scripts later.

The Command Line

Executing a built-in or external command from the shell is simple -- just type in the
command’s name. While typing in a command line, various editing keystrokes are
available:

^X cancel what you’ve entered so far

^H/DEL rubout the character left of the cursor

^W rubout the word left of the cursor

Command Line History

The shell maintains a history of the 20 most recently entered commands. You can scroll

1 Printed 22 Feb 03Revised 6 May 1994

ProLine General Commands CSH(C)CSH(C)

through command lines entered and repeat one by pressing Control-P (for previous) to
move backward in time toward the oldest command lines. Pressing Control-N (for next)
moves forward to the most recent command lines.

The shell also recognizes the exclamation point (!) character at the beginning of each
line as a way of referencing specific history lines.

!! Selects the last entered command line.

!# Selects a command line by the number associated with #.

!text Selects the most recent command line that begins with a pattern of text.

Arguments and Special Characters

In many cases, you may need to give extra information, or arguments, to a command. To
help the shell determine which items are commands and arguments, separate them with
space characters.

To specify a single argument that may contain spaces within it, enclose the argument in
quotation marks. Example:

echo "This is one argument"

The shell ignores most control characters entered on the command line. To insert a
control character, use a caret before the corresponding letter (e.g., ‘‘^G’’ for
Control-G).

If you need to enter a quotation mark or caret in an argument, prefix it with a
backslash ‘‘\’’ character. Likewise, to enter a backslash, prefix it with a
backslash (in other words, two backslash characters make one). Examples:

echo "\"Wow!\" she exclaimed."
echo "Here is a caret: \^"
echo "Here is a backslash: \\"

Using a backslash to insert special characters is known as escaping. There are other
characters the shell recognizes as having special meanings, such as the dollar sign
($), tilde (~), period (.), and asterisk (*). These are discussed later.

Built-In Commands

The shell has many built-in commands. They are listed below along with the arguments
they require. Optional arguments are shown between [brackets]. Arguments shown with
‘‘...’’ following means ‘‘one or more of the same’’.

add src... [targ] Adds source file(s) onto the end of the target file. If one file
argument is given, the file must reside outside of the current
directory and will be appended to a file in the current directory

2 Printed 22 Feb 03Revised 6 May 1994

ProLine General Commands CSH(C)CSH(C)

with the same name. If more than one argument is given, the final
argument is the target file, and all others are appended onto it.

alias [old new...] Substitutes a command name with a new name (and any additional
arguments). The new replacement arguments may contain the following
special characters: !^ (inserts the first argument from the command line
here), !$ (inserts the last argument here), and !* (inserts all
arguments here). Entering alias without any arguments displays a list
of the current aliases.

cat file... Short for ‘‘concatenate’’. Cat is normally used to display the
contents of a file, but is also useful for redirecting a file to
other files or devices (e.g. a printer).

cd [dir] Changes the current working directory. If the argument is
omitted, the current directory becomes your $home directory.

clear Clears the screen.

cp src... [targ] Copies a file. If only one file is given, it must reside outside
of the current directory, and is copied to a file of the same name within
the current directory. If more than one argument is given, the source files
are copied onto the target file. If the target is a directory, the files
are copied into the directory, retaining their names.

echo [-n] args... Echoes any arguments that follow. If the -n option is given, no
newline is printed after the final argument. To redirect output
from echo to a file, include >file as the last argument. To append
output to an existing file, use >>file.

exec command... This replaces the current shell with a new command interpreter.
If called from a shell script, the script is terminated.

exit [n] Tells the shell to quit and return to the calling process. Typing
Control-D is recognized as the exit command, too. The optional number
argument useful for returning a result code to the calling process
(default is zero).

history Displays the 20 most recent command lines.

if expr then [...] Conditional test to execute commands. This is normally used
within shell scripts and is discussed later.

logout Terminate connection immediately.

mkdir dir... Makes a subdirectory.

mv src... [targ] Moves a file from one place to another. It works identically to
cp, except it deletes the source file after copying it to the
target. It is also used to rename a file if both src and targ
reside in the same directory.

3 Printed 22 Feb 03Revised 6 May 1994

ProLine General Commands CSH(C)CSH(C)

pwd Prints out the name of the current Working Directory.

read var Reads input from the user and assigns it to a variable.

rm file... Removes files and empty directories.

set [var=value...] Sets shell variables to specified values. Set without arguments
displays the currently set variables.

shift [var] Shifts the arguments in the command line down by removing the
first argument. Without arguments, shift affects argv (see the
discussion on variables later for details). By including an
optional variable name, that variable is affected. This command is
typically used by shell scripts for argument parsing.

source file Executes shell commands from a text file.

unalias name... Removes aliases.

unset var... Removes variables.

Many more commands can be called up from disk by the shell. One such command is ls,
which lists the contents of a directory. To see the names of all the disk-based
commands, enter:

ls $path

Entering a command without any arguments usually displays a line of ‘‘usage’’
information. You can get more information about a command by using the man command
(short for ‘‘manual’’). Man requires the name of the item you want more help on as
an argument. It prints out nicely formatted pages from the online manual. (Try the
‘‘man man’’ command -- it lets man tell you more about itself).

Access Permissions

The shell watches certain requests to make sure the user has the required access
permissions. There are four types of file access: reading from a file, writing to or
creating a file, destroying a file, and executing a file. Under ProLine, access
permissions are specified for the entire contents of a single directory level, rather
than on a file-by-file basis. (See dstat for more details).

Output Redirection

If you’re using the system from the local console, you can redirect the output from the
shell and other programs to a printer attached to the computer. To do this, include
>.printer as the final argument to a command line. This tells the shell to turn on
printer output. It’s only good for one command, so there is no additional command to
turn it off; it will do so when it wants another command from you.

4 Printed 22 Feb 03Revised 6 May 1994

ProLine General Commands CSH(C)CSH(C)

Example:

echo This is a test >.printer

Another form of output redirection is to send output into a file, rather than to the
console or printer. The syntax is similar to >.printer.

Example:

man csh >temp

In this case, it is man’s job to handle redirecting its output into the file called
‘‘temp’’ (or whatever name you provide). Unfortunately, not all programs on the system
provide this ability. Check with man to see if a certain command provides file output
redirection.

Directory Shorthand

The shell looks at the arguments you give to see if any start with special characters
that reference directories. These characters are one or two periods (.), and the tilde
(~).

When the shell encounters a single period, it replaces it with the path to the current
working directory. If it sees two periods, it replaces them with the name of the
parent directory of the current working directory. In other words, two periods means
to step back one directory level. So, if a single periods refers to $/usr/jholt, then
two periods refer to $/usr.

The tilde (~) is directory shorthand for referencing home directories. To access a file
in your home directory called stuff when the current directory is not your home, use
‘‘~/file’’. The shell sees ‘‘~/’’ and knows that you’re referencing your home
directory (which is shorthand for ‘‘$/usr/yourloginname/file’’). By introducing the
login name of another user between ~ and /, you reference that user’s home directory.
For example, ‘‘~jsbach/sonata’’ is short for $/usr/jsbach/sonata.

Shell Variables

Shell variables are short names given to command line items that are cumbersome or hard
to remember. The shell comes with a number of preset variables containing useful
information. To obtain the value of a variable, a dollar sign ($) is placed before its
name (e.g. $path)

Variables the shell defines for you are:

/ Directory in which ProLine resides on the local file system. Since one
ProLine system may have a startup prefix that is different from another
ProLine, the $/ variable allows ProLine systems to work consistently in the
shell from one system to the next.

5 Printed 22 Feb 03Revised 6 May 1994

ProLine General Commands CSH(C)CSH(C)

argc Contains the count (+1) of the arguments passed to a shell script.

argv Contains the shell script’s name and arguments passed.

caller The system caller ID number.

cwd The current working directory.

date The current date and time in the standard ProLine date format:

Sat, 18 Apr 92 10:22:19 PDT

editor The name of the editor used to edit text files on ProLine.

exit If set, any errors in a shell script cause the script to halt. By unsetting
this variable, errors will allow a script to continue processing.

gid Your group-ID number.

home Your home directory.

host The name of the host system.

login Your login name.

mail The path to your mailbox file.

name Your first and last name.

path A list of paths to directories containing external command files.

prompt Your shell prompt.

shell Path to the shell program.

shlvl The number of nested shell levels.

status The result of the last command.

time The current day of the week, date, month, year, hours, minutes, seconds, and
day of week number in this format:

Sat 18 04 92 10 22 19 6

Month values are 01 for Jan up to 12 for Dec. Day of week values are 0 for
Sun up to 6 for Sat. All numeric values (except for day of the week number)
are padded with zeroes to fill out to two digits.

tmpdir Path to a directory for temporary file storage (usually a RAM disk or fast
hard disk volume).

6 Printed 22 Feb 03Revised 6 May 1994

ProLine General Commands CSH(C)CSH(C)

tty Contains ‘‘modem’’ or ‘‘console’’ depending on how you logged in -- remotely
or locally.

uid Your user-ID number.

version The shell’s version information.

Subscripted Variables

You can access individual words within a variable by including a subscript after the
variable’s name. For example, to access the first word of the $time variable (the day
of the week), use $time[0]. To access the hours, use $time[4]. To access arguments
passed to a script from within the script, use $argv[x] as appropriate.

Avoiding Variable Expansion

The shell always expands variables to the values they contain, even when placed inside
quotation marks. To cause the shell to pass a dollar sign and a word through
unexpanded, prefix it with a backslash. (e.g. ‘‘\$time’’). Consider the following:

alias bye "echo Login: $date[4]^MLogout: \$date[4]; logout"

In this alias definition, ‘‘bye’’ is defined with an echo command that includes the
$date variable in two places. The first instance is not escaped by a backslash, and
therefore when this alias command is executed, the current time is inserted. The
second instance of $date is escaped by a backslash, and therefore the word ‘‘$date’’
is literally inserted into the definition. When the bye alias is actually used, only
then would the second instance of $date be recognized (since the backslash would not be
present), and the current time inserted. As a result, the bye alias displays both the
login and logout times before disconnecting.

The same is true when assigning variables to a variable. If you want your shell prompt
to display the current working directory, use:

set prompt="\$cwd> "

If the $cwd variable reference had not been escaped with a backslash, this command
would assign the prompt variable a value containing the current working directory at
the time when set was issued. The prompt would never change even as new directories
were chosen.

Shell Scripts

You can instruct the shell to execute more than just one command at a time by entering
command sequences separated by semicolons (;) on the same line. But, if you need to
execute many, often repeated command sequences, it is best to put them into a shell
script.

7 Printed 22 Feb 03Revised 6 May 1994

ProLine General Commands CSH(C)CSH(C)

A shell script contains any commands you would enter on the command line. Once created
using any text editor, you can execute the script by using the source command. (To
make a script executable without having to use source, change its file type to CMD
with the setfile command).

Initialization Scripts

When first launched, csh sets up an internal environment which can be further
customized through various initialization scripts. If it exists, csh invokes a
system-wide initialization script $/etc/cshrc. This script is set up by the
administrator to perform various sign-on tasks, like reporting new system bulletins
(news), reporting mail, and finally invoking the user’s personal login script
(discussed next).

When interactive subshells are launched without arguments, csh does not execute
$/etc/cshrc nor the user’s login script, but will attempt to execute the user’s
personal cshrc file, if it exists in the home directory.

The $/etc/cshrc Script

The system-wide startup script, cshrc, is expected to reside in $/etc or the
configured temporary files directory ($tmpdir), which might be a high-speed RAM disk.
If the system-wide cshrc does not exist, csh attempts to execute the user’s login
script during a login session.

The Login Script

Each user has a special script of startup commands. The script is called login
(~/login). This file can contain a variety of shell commands, and can be modified as
desired, allowing a unique and personal entry into the system for each session. Once the
login script has done its job, the shell may prompt for further commands, but
typically login invokes the user’s personal cshrc file.

The login script is derived originally from the default script ($/etc/default/login)
when an account is first created.

Personal cshrc Script

The personal cshrc file (~/cshrc), contains commands that are used to install aliases
and set variables such that each shell is set up as the user desires. This script is
normally launched by a command in the user’s ~/login script, but is automatically run
whenever csh invokes an interactive subshell.

Script Control Using the IF Directive

To control execution of script commands, use the if directive. If, and its partners

8 Printed 22 Feb 03Revised 6 May 1994

ProLine General Commands CSH(C)CSH(C)

else and endif, are used to test certain conditions and execute only the commands
which should be processed based on the results of those conditions. The condition is
determined by the logical expression given to if.

An example:

if $a = $b then echo TRUE else echo FALSE

Another example:

if $time[0] = "Sun" and -f workfile then
 echo It is Sunday AND the workfile exists!
else
 echo EITHER it is not Sunday
 echo OR the workfile does not exist.
endif

For more details on if statements, see the if(C) manual entry.

Files
$/bin/csh - C-Shell initialization program,
$/etc/cshrc - system-wide initialization script,
$/bin/cshx - C-Shell kernel code,
$/usr/* - your ‘‘home’’ directory (~),
~/login - your login startup script,
~/cshrc - your shell initialization script,
$/sys/modules/parse - parsing tools,
$tmpdir/cshenv* - temporary environment file,
$tmpdir/* - C-Shell runs faster when $/bin/cshx, $/etc/cshrc, and $/sys/modules/parse
live on a RAM disk.

Author
Morgan Davis (mdavis@mdg.cts.com)

See Also
if(C), plush(C), rc(ADM), scripts(M)

9 Printed 22 Feb 03Revised 6 May 1994

ProLine General Commands CSMOD(C)CSMOD(C)

Name
csmod - Conference System moderator’s utility

Syntax
csmod conference

Description
Csmod is a tool for conference moderators. It requires the name of a conference as a
startup argument. Only the Super User or the assigned moderator of the conference can
use csmod.

Csmod allows changes to the conference as well as to its topics. The primary command
level is for conference-related changes and reports. Commands here are:

<T> Topic changes. Presents a list of topics in the conference from which one
must be chosen to perform changes on a topic. Commands at this level are
described later.

<M> Moderator change. Allows reassignment of a moderator.

<I> Info file changes. Invokes the editor on the conference’s ‘‘info’’ file in
order to create or change it.

<O> Open status change. Changes a conference’s Open status. Open conferences
can be joined by all system members. Closed conferences can only gain users
when the moderator manually joins them.

<J> Join a user. Selectively joins a user to the conference. This is mostly
used with closed conferences.

<U> Unjoin a user. Removes a user from the conference.

<S> Subscriber report. Displays a list of all system users joined to the
conference.

<Q> Quit csmod.

When making changes to a topic with the <T>opic option, a second command level is
invoked. Commands here are:

<T> Topic name change. Renames a topic.

<N> Network changes. Assigns or changes the network e-mail address to which
conference postings are sent. A topic with a blank e-mail address is a
non-networked topic. This command also allows you to determine if
‘‘signature’’ files should be attached to outgoing messages.

<I> Info file changes. Invokes the editor for the topic’s ‘‘info’’ file in order
to create or change it.

1 Printed 22 Feb 03Revised 31 May 1992

ProLine General Commands CSMOD(C)CSMOD(C)

<R> Read-Only change. Adjusts the read-only or read-write status for the topic.

<Q> Quit topic changes. Returns to the main conference command level.

See Also
cs(C), cs(F), cs.maint(ADM)

2 Printed 22 Feb 03Revised 31 May 1992

ProLine General Commands CTIME(C)CTIME(C)

Name
ctime - Connect time and accounting info

Syntax
ctime

Description
Ctime displays information about your connect time. The current time, the time you
logged in, and the previous login time are shown, along with the total number of hours
used for your current session, the current month, and previous month, and the total
hours spent online since your account was opened. It also tells you how many times you
have logged in, as well as the total number of days that you can go without logging in
before your account is automatically removed due to inactivity. Current and previous
month’s access charges are also shown, if any.

Operator’s Note

If ctime is invoked from the ‘!’ command in login, the account statistics for the
system will be shown, displaying amassed logins and hours since the system went online.

Files
$tmpdir/utmp - current session accounting,
$/etc/adm - account database

See Also
log(C)

1 Printed 22 Feb 03Revised 6 May 1992

ProLine General Commands DF(C)DF(C)

Name
df - Disk free space

Syntax
df

Description
Df prints out the amount of free space on all of the mounted file systems. The
reported numbers are in 512-byte disk blocks. The percentage of disk space used is
also given.

A sample display looks like this:

Dev Blocks Free Used Used% Volume

3.2 127 100 27 21% /ram
7.1 41616 33302 8314 20% /a
6.1 280 185 95 34% /z

Df supports output redirection into files.

See Also
du(C), mount(ADM), unmount(ADM)

1 Printed 22 Feb 03Revised 12 May 1992

ProLine General Commands DL(C)DL(C)

Name
dl - Data Librarian

Syntax
dl

Description
(Throughout this manual entry, dl denotes the location of the Data Library).

The data librarian offers an easy way to upload and download programs. The library
metaphor is used extensively throughout this program. Users of the data library can
‘‘open’’ specific card catalogs (a program category; ie., Business, Games, Graphics,
Utilities, etc.) and ‘‘browse’’ through the descriptions for each title on the
‘‘shelf’’, selecting which files they want to ‘‘reserve’’ (flag) for ‘‘check out’’
(download) when they’re ready to leave.

Each file in the library has an ‘‘index card’’ describing the file name, type, size,
author, and a short synopsis of what the file is used for. The user can search through
all index cards in a particular card catalog using ‘‘key words’’ in the title and/or
description (ie., ‘‘word’’ would display all index cards that have the search pattern
anywhere on the card -- wordprocessing, PC-Word, wordwrap, and ‘‘the latest word’’
would trigger a match). At the bottom of each card is a ‘‘cross-reference index’’ that
links the card to various card catalogs in the library, so that only one card (file)
has to be ‘‘donated’’ (uploaded). This method makes it easier for the user to find a
particular file, and makes multiple uploads into different file areas unnecessary.

XMODEM protocol is used for transferring data files, although if the file is text (TXT)
the user can request an ASCII text transfer and capture the file to disk or a copy
buffer.

The data library program is highly interactive, and contains an excellent built-in
tutorial (the ‘‘information desk’’), so the best way to learn it is to use it.

Files
dl/lib/prog/* - program files in the library,
dl/lib/desc/* - description files for catalog cards,
dl/lib/link/* - link file indexes,
dl/lib/dl.vars - environment file,
dl/lib/dl.data - data definitions,
dl/lib/dl.user - last online database for See What’s New,
$/sys/pdl/dl.dir - working prefix for the data library,
$/sys/pdl/dl.sort - DL code overlay for data/pointer sorting,
$/sys/pdl/dl.xfer - DL code overlay for upload/download,
$/sys/pdl/* - text files for data library online help.

See Also
dl.maint(C), rx(C), rz(C), sx(C), sz(C)

Author
Jerry Hewett

1 Printed 22 Feb 03Revised 3 May 1988

ProLine General Commands DSTAT(C)DSTAT(C)

Name
dstat - Directory access status

Syntax
dstat [opcode-permission] [directory] ...

Description
Without any arguments, dstat displays the directory access status for the current
working directory. By giving one or more directory names as arguments, dstat reports
their associated access statuses.

(The access status pertains only to other users who do not own the specified
directories. This is because the owner of a directory holds full access for its
contents.)

When a directory is first created, it has no access permission levels assigned. By
using dstat with permission flags, however, the following statuses can be set or
cleared:

r Read permission - viewing, searching, downloading, and copying to other files.

w Write permission - creating files (but not modifying existing files).

d Delete permission - complete removal and destruction of files.

x Execute permission - the ability to execute programs and shell scripts.

To make changes, prefix the permission characters with an opcode as follows:

- Removes permissions

= Sets absolute permissions

+ Adds permissions

Examples:

dstat +rw # add read and write access
dstat =x # set only execution permission
dstat -d # remove delete permission
dstat + # (same as = alone) grant full access
dstat - # remove all permissions

You can give more than one permission at a time by including multiple permission
characters after the opcode. If permission characters are omitted, full access is
either granted (+/=) or removed (-).

When dstat is told to adjust a permission level, it assumes the current working
directory if no directory argument is given. Multiple directories can be set to the
same permission levels by specifying more than one directory in the command line.

1 Printed 22 Feb 03Revised 30 September 1993

ProLine General Commands DSTAT(C)DSTAT(C)

IMPORTANT
The system administrator should NOT allow both WRITE AND EXECUTE permission in
a directory outside of the $/usr hierarchy! Doing this would allow a user to upload a
program or binary file, execute it, and cause potential havoc, catastrophic event,
cataclysmic disaster, or worse. The shell limits execution to shell script files by
non-root users within the $/usr hierarchy. Therefore, write+execute permission is safe
here.

Programmer’s Note
Directory permission settings are stored in the lower 4 bits of the auxiliary field in
the directory’s file information. Arbitrarily changing these bits could have
disastrous effects should it allow for ‘‘destroy’’ permission in a system directory.
The bit assignments are:

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | | | | | x| d| w| r|
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Auxiliary Field in Directory Files

Bits 4 through 15 are reserved for future use.

See Also
mkdir(C), setfile(C)

2 Printed 22 Feb 03Revised 30 September 1993

ProLine General Commands DU(C)DU(C)

Name
du - Summarize disk usage

Syntax
du [-a] [-s] [name...]

Description
Du gives the number of disk blocks contained in all files and (recursively)
directories within each directory specified by the name arguments. If no names are
given, the current directory is assumed.

The optional argument -s causes only the grand total (for each of the specified names)
to be given. The optional argument -a causes an entry for each file. Absence of
either causes an entry to be generated for each directory only.

Notes
Non-directories given as arguments are not allowed.

This utility reports sizes in 512-byte blocks.

Output redirection is supported only when the -a argument is not given.

See Also
df(C), ls(C)

1 Printed 22 Feb 03Revised 12 May 1992

ProLine General Commands ECHO(C)ECHO(C)

Name
echo - Echo text arguments

Syntax
echo [-n] [arg...]

Description
Displays text arguments to your terminal. Spaces are automatically placed between
arguments. Normally, echo will send a newline after printing the last argument, but
it can be suppressed by including -n as the first argument.

Examples:

echo Hello, World!

Displays "Hello, World!" followed by a newline.

echo -n Wait...

Displays "Wait..." without a newline.

Output from echo can be directed to a file by including ‘‘>file’’ as the final
argument. Appending is also supported by using‘‘>>file’’.

Echo is an excellent diagnostics command for tracking the execution of shell scripts.

See Also
csh(C), scripts(M)

1 Printed 22 Feb 03Revised 12 May 1992

ProLine General Commands ED(C)ED(C)

Name
ed - Text editor

Syntax
ed file

Description
ed is the standard UNIX text editor. When the file argument is given, ed simulates
an e command (see below) on the named file; that is to say, the file is read into ed’s
buffer so that it can be edited. ed operates on a copy of the file it is editing;
changes made to the copy have no effect on the file until a w (write) command is given.
The copy of the text being edited resides in a temporary buffer. There is only one
buffer.

Commands to ed have a simple and regular structure: zero, one, or two addresses
followed by a single-character command, possibly followed by parameters to that
command. These addresses specify one or more lines in the buffer. Every command that
requires addresses has default addresses, so that the addresses can very often be
omitted.

In general, only one command may appear on a line. Certain commands allow the input of
text. This text is placed in the appropriate place in the buffer. While ed is
accepting text, it is said to be in input mode. In this mode, no commands are
recognized; all input is merely collected. Input mode is left by entering a period (.)
alone at the beginning of a line.

The ProLine version of ed does not support regular expression parsing, other than
simple /text/ and ?text? syntaxes for bi-directional pattern searching. A null regular
expression, // or ??, is equivalent to the last one used.

To understand addressing in ed , it is necessary to know that there is a current line
at all times. Generally speaking, the current line is the last line affected by a
command; the exact effect on the current line is discussed under the description of
each command. Addresses are constructed as follows:

1. The character . addresses the current line.

2. The character $ addresses the last line of the buffer.

3. A decimal number n addresses the n-th line of the buffer.

4. A regular expression enclosed by slashes (/) addresses the first line found by
searching forward from the line following the current line toward the end of the
buffer and stopping at the first line containing a string matching the regular
expression. If necessary, the search wraps around to the beginning of the buffer
and continues up to and including the current line, so that the entire buffer is
searched.

5. A regular expression enclosed in question marks (?) addresses the first line
found by searching backward from the line preceding the current line toward the
beginning of the buffer and stopping at the first line containing a string

1 Printed 22 Feb 03Revised 12 May 1992

ProLine General Commands ED(C)ED(C)

matching the regular expression. If necessary, the search wraps around to the
end of the buffer and continues up to and including the current line. Also see
the last paragraph before Files below.

6. An address followed by a plus sign (+) or a minus sign (-) followed by a decimal
number specifies that address plus or minus the indicated number of lines. The
plus sign may be omitted.

7. If an address begins with + or -, the addition or subtraction is taken with
respect to the current line; e.g, -5 is understood to mean .-5.

8. If an address ends with + or -, then 1 is added to or subtracted from the
address, respectively. As a consequence of this rule and of rule 7 immediately
above, the address - refers to the line preceding the current line. Moreover,
trailing + and - characters have a cumulative effect, so -- refers to the
current line less 2.

9. For convenience, a comma (,) stands for the address pair 1,$, while a semicolon
(;) stands for the pair .,$.

Commands may require zero, one, or two addresses. Commands that require no addresses
regard the presence of an address as an error. Commands that accept one or two
addresses assume default addresses when an insufficient number of addresses is given;
if more addresses are given than such a command requires, the last address(es) are
used.

Typically, addresses are separated from each other by a comma (,). They may also be
separated by a semicolon (;). In the latter case, the current line (.) is set to the
first address, and only then is the second address calculated. This feature can be used
to determine the starting line for forward and backward searches (see rules 4 and 5
above). The second address of any two-address sequence must correspond to a line that
follows, in the buffer, the line corresponding to the first address.

In the following list of ed commands, the default addresses are shown in parentheses.
The parentheses are not part of the address; they show that the given addresses are
the default.

It is generally illegal for more than one command to appear on a line. However, any
command (except e, f, r, or w) may be suffixed by p or by l, in which case the current
line is either printed or listed, respectively, as discussed below under the p and l
commands.

(.)a
<text>
.

The append command reads the given text and appends it after the addressed line;
dot is left at the last inserted line, or, if there were no inserted lines, at the
addressed line. Address 0 is legal for this command: it causes the ‘‘appended’’
text to be placed at the beginning of the buffer. This is equivalent to the 1i
command.

2 Printed 22 Feb 03Revised 12 May 1992

ProLine General Commands ED(C)ED(C)

(.)c
<text>
.

The change command deletes the addressed lines, then accepts input text that
replaces these lines; dot is left at the last line input, or, if there were none,
at the first line that was not deleted.

(.,.)d
The delete command deletes the addressed lines from the buffer. The line after
the last line deleted becomes the current line; if the lines deleted were
originally at the end of the buffer, the new last line becomes the current line.

e file
The edit command causes the entire contents of the buffer to be deleted, and then
the named file to be read in; dot is set to the last line of the buffer. If no
filename is given, the currently remembered filename, if any, is used (see the f
command). The number of characters read is typed; file is remembered for possible
use as a default filename in subsequent e, r, and w commands.

E file
The Edit command is like e, except the editor does not check to see if any changes
have been made to the buffer since the last w command.

f file
If file is given, the filename command changes the currently remembered filename
to file; otherwise, it prints the currently remembered filename.

h
The help command gives a short error message that explains the reason for the most
recent ? diagnostic.

H
The Help command causes ed to enter a mode in which error messages are printed
for all subsequent ? diagnostics. It will also explain the previous diagnostic if
there was one. The H command alternately turns this mode on and off; it is
initially off.

(.)i
<text>
.

The insert command inserts the given text before the addressed line; dot is left
at the last inserted line, or if there were no inserted lines, at the addressed
line. This command differs from the a command only in the placement of the input
text. Address 0 is not legal for this command.

(.,.+1)j
The join command joins contiguous lines by removing the appropriate newline
characters. If only one address is given, this command does nothing.

3 Printed 22 Feb 03Revised 12 May 1992

ProLine General Commands ED(C)ED(C)

(.,.)l
The list command prints the addressed lines in an unambiguous way: a few
nonprinting characters (e.g., tab, backspace) are represented by mnemonic
overstrikes, all other nonprinting characters are printed in octal, and long lines
are folded. An l command may be appended to any command other than e, f, r, or w.

(.,.)ma
The move command repositions the addressed line(s) after the line addressed by a.
Address 0 is legal for a and causes the addressed line(s) to be moved to the
beginning of the file; it is an error if address a falls within the range of moved
lines; dot is left at the last line moved.

(.,.)n
The number command prints the addressed lines, preceding each line by its line
number and a tab character; dot is left at the last line printed. The n command
may be appended to any command other than e, f, r, or w.

(.,.)p
The print command prints the addressed lines; dot is left at the last line
printed. The p command may be appended to any command other than e, f, r, or w;
for example, dp deletes the current line and prints the new current line.

(*)P prompt
The editor will prompt with a * for all subsequent commands. If the optional
prompt is included it becomes the new prompt string. P alone alternately turns
this mode on and off; it is initially on.

q
The quit command causes ed to exit. No automatic write of a file is done.

Q
The editor exits without checking if changes have been made in the buffer since
the last w command.

r file
The read command reads in the given file after last line in the buffer. If no
filename is given, the currently remembered filename, if any, is used (see e and f
commands). The currently remembered filename is not changed unless file is the
very first filename mentioned since ed was invoked. If the read is successful,
the number of characters read is typed; dot is set to the last line read in.

(.,.)s/regular-expression/replacement/

(.,.)s/regular-expression/replacement/g

The substitute command searches each addressed line for an occurrence of the
specified regular expression. In each line in which a match is found, all
(nonoverlapped) matched strings are replaced by the replacement if the global
replacement indicator g appears after the command. If the global indicator does
not appear, only the first occurrence of the matched string is replaced. It is an
error for the substitution to fail on all addressed lines. Any character other

4 Printed 22 Feb 03Revised 12 May 1992

ProLine General Commands ED(C)ED(C)

than space or newline may be used instead of / to delimit the regular expression
and the replacement; dot is left at the last line on which a substitution
occurred.

(.,.)ta
This command acts just like the m command, except that a copy of the addressed
lines is placed after address a (which may be 0); dot is left at the last line of
the copy.

(1,$)w file
The write command writes the addressed lines into the named file. If the file
does not exist, it is created. The currently remembered filename is not changed
unless file is the very first filename mentioned since ed was invoked. If no
filename is given, the currently remembered filename, if any, is used (see e and f
commands); dot is unchanged. If the command is successful, the number of
characters written is displayed.

($)=
The line number of the addressed line is typed; dot is unchanged by this command.

(.+1)
An address alone on a line causes the addressed line to be printed. A RETURN
alone on a line is equivalent to .+1p. This is useful for stepping forward through
the editing buffer a line at a time.

If an interrupt signal is sent, ed prints a question mark (?) and returns to its
command level.

Some size limitations: 255 characters per line, 255 characters per global command list,
64 characters per filename. The limit on the number of lines depends on the amount of
memory.

Files that contain characters not in the ASCII set (bit 8 on), cannot be edited by
ed. Editable file types are TXT and CMD. TXT files cannot be the random-access text
files.

Diagnostics

? Command errors

? file An inaccessible file

Use the help and Help commands for detailed explanations.

If changes have been made in the buffer since the last w command that wrote the entire
buffer, ed warns the user if an attempt is made to destroy ed’s buffer via the e or
q commands: it prints ? and allows you to continue editing. A second e or q command at
this point will take effect.

5 Printed 22 Feb 03Revised 12 May 1992

ProLine General Commands ED(C)ED(C)

See Also
edit(C), grep(C), csh(C), setenv(C), vedit(C)

6 Printed 22 Feb 03Revised 12 May 1992

ProLine General Commands EDIT(C)EDIT(C)

Name
edit - Text editor

Syntax
edit file

Description
Edit is the standard ProLine line-oriented text editor. It is used to make changes to
a text file, or create new files. The editor can hold roughly 300 lines of text.
Edit recognizes the following commands.

Add - Append text to end of buffer
Change <lines> - Change text segments (local/global)
Delete <lines> - Delete lines from buffer
Find <pattern> - Search for a pattern of text
Insert at <line> - Insert lines at specified location
List <lines> - List buffer line(s) with numbers
Print <lines> - Print line(s) without numbers
Quit - Quit editing and save changes
Read - Read a file into editor from user area
Wordwrap - Toggle word wrapping ON or OFF
eXit - Exit editor, cancel all changes
? - Display a help file

<lines> is an argument which may be any of the following:

All - All lines, same as pressing RETURN
First - First line in buffer
Last - Last line in buffer
. - (period) Last line accessed

Or <lines> may be a numeric range as shown in these examples:

3 - Line 3
-3 - All lines from the first to 3
5-183 - All lines from 5 to 183
22- - All lines from 22 to the last

When done editing, use Quit to write changes to disk and leave the editor. You can exit
and cancel any changes by using eXit.

Editing a file does not change its file type. Only sequential text files can be
edited.

See Also
ed(C), vedit(C)

1 Printed 22 Feb 03Revised 13 May 1992

ProLine General Commands ERR(C)ERR(C)

Name
err - Describe error codes

Syntax
err [number]

Description
When an error occurs, a brief message is usually displayed describing the problem.
However, some programs will just report an error code number. You can find out what an
error code means by invoking the err shell script followed by a code number.

If you want to see the entire list of error codes and their descriptions, enter err
without arguments.

Error reports with code numbers are usually accompanied by a line number reference
(e.g. ‘‘Error #10 at 170’’). Supply only the error code (e.g. ‘‘10’’) but not the line
number.

Files
$/etc/help/errors - database of error codes.

1 Printed 22 Feb 03Revised 3 November 1993

ProLine General Commands FIND(C)FIND(C)

Name
find - Find files

Syntax
find [options] [pathname...] [>output]

Description
Find recursively descends the directory hierarchy for one or more pathnames given,
seeking all files that match specified search options. If a pathname is ‘/’, the root
prefix is assumed.

Without options, find lists all the files in the current working directory and every
directory found within.

A number of useful examples are given at the end of this manual entry.

Options

-a Consider all files when reading directories. This includes visible and
invisible files. By default, only visible files are considered.

-c Report a count of matching files when find is done.

-d levels Search only through a specified number of directory levels. The
default is 16 levels deep.

-f file Use information obtained from file for making comparisons with
searched files. Comparison is made for all search selectors except for
file names (-N). Example:

find -f foo -T =

This finds all files within the current directory tree that match the
file type for the file ‘‘foo’’. Using ‘=’ with a selector tells find
to use the appropriate information from the file specified with -f.
(Selectors are discussed below).

-i Consider only invisible (hidden) files when reading directories.

-p pattern Specify pattern when printing matched files. The contents of
pattern are printed for each match, and imbedded ‘%’ characters are
used to substitute special information:

% - displays nothing
%f - fully qualified path to file
%n - name of file
%p - parent path to file
%s - size of file in blocks
%x - partial path to file excluding source prefix

1 Printed 22 Feb 03Revised 20 March 1994

ProLine General Commands FIND(C)FIND(C)

Combinations of these options can be included in the pattern (e.g.,
the pattern ‘‘%n found in %p’’ displays ‘‘bar found in /a/usr/foo/’’ when
the complete pathname is ‘‘/a/usr/foo/bar’’).

By default, find displays the path to each file.

-q matches Quit after the specified matches are found. The default is to never
quit until all paths have been searched.

-t Include the time (hh:mm) whenever a date match is made. By default,
only the date (mm/dd/yy) is used in searches.

-v Displays progress information on each directory being searched.

Selectors

The following selectors are used to specify matching files:

-A attrib Match files that have attributes as specified by these characters:

d = Destroy (file can be removed)
n = Rename (file can be renamed)
b = Backup (file needs a backup)
i = Invisible (file is hidden)
w = Write (file can be written to)
r = Read (file can be read)

-N pattern Match files by a name pattern. The the pattern must be in
lowercase, and may contain ‘*’ to match wildcard portions. Thus, ‘‘-N
baz’’ finds all file names containing ‘‘baz’’.

-T type Match files by type (a decimal value from 0 to 255).

-X auxtype Match files by auxtype (a decimal value from 0 to 65535).

-S blocks Match files by size in 512-byte blocks.

-B blocks Match files bigger than the size given in blocks.

-L blocks Match files smaller than the size given in blocks.

-M date Match files modified on date. date is a string in one of the forms
listed:

mm/dd/yy
"mm/dd/yy hh:mm"
"mm/dd/yy hh:mm AM"
"mm/dd/yy hh:mm PM"

representing the month (1-12), day (1-31), year (0-99), hour (0-23), and

2 Printed 22 Feb 03Revised 20 March 1994

ProLine General Commands FIND(C)FIND(C)

minute (0-59). The string must be quoted if it contains a space. A
period (.) indicates the current date and time.

If the time is omitted, midnight is assumed. If the time is
significant in date comparisons, include the -t option as described
above.

-O date Match files older than date.

-Y date Match files younger (newer) than date.

An equal sign (=) may be the argument to a selector if the -f option is used. See -f
above for more details.

Negating Matches

Prefixing a selector with ‘!’ inverts (or negates) the match result. That is, ‘‘-!N’’
means to match all files that do not match a particular name pattern, thus ‘‘-!N
baz’’ finds all files that do not contain the pattern ‘‘baz’’ in their names.

Composite Selectors

Multiple search selectors can be combined. As long as each selector matches, find
continues to apply selection criteria to the current file. When all selectors have
been processed successfully for a file, it is considered to be a match.

Output Redirection

If the very last argument given begins with ‘>’, find redirects all of its output,
except verbose progress reports, into the filename which follows. This is excellent for
creating scripts containing commands which act on all the matched files.

Examples

To find all executable programs younger (newer) than $/bin/man:

find -f $/bin/man -Y = $path

To build and run a script that removes all files beginning with ‘‘finder.’’:

find -N finder.* -p "echo found %n in %p; rm %f" / >killfndr
source killfndr

To find all files in $/usr that are not named ‘‘login’’, ‘‘signature’’, nor ‘‘mailrc’’,
and are not directory files:

3 Printed 22 Feb 03Revised 20 March 1994

ProLine General Commands FIND(C)FIND(C)

find -!N login -!N signature -!N mailrc -!T 15 $/usr

To report only the count of all invisible files in the current directory level:

find -i -d 1 -c -p %

To find all files that need to be backed up, showing their sizes:

find / -a -A b -p "%f (%s blocks)"

To find all files modified between January and February in 1994:

find / -a -Y "01/01/94" -O "02/01/94"

Author
Morgan Davis (mdavis@mdg.cts.com)

See Also
grep(C), setfile(C), version(C), whereis(C)

4 Printed 22 Feb 03Revised 20 March 1994

ProLine General Commands GREP(C)GREP(C)

Name
grep - Find a pattern in a file

Syntax
grep [options] pattern file...

Description
Grep, abbreviation of Globally find Regular Expressions and Print, searches one or
more files for lines matching a pattern. Normally, each line found is displayed.
The following options are recognized:

-v All lines but those matching are printed.

-c Only a count of matching lines is printed.

-l The names of files with matching lines are listed (once) separated by newlines.

-n Each line is preceded by its relative line number in the file.

-h Suppress display of filename headers.

-y The case of letters is ignored in making comparisons (that is, upper and lower
case are considered identical).

Example:

grep -y endif login

This displays all lines in the file login containing the word endif, ignoring
alphabetic case.

Note
To search for a pattern consisting of words and spaces, the entire pattern must be
enclosed in quotes:

grep "dream into action" clip

If the last argument in the command line starts with ‘>’, the output from grep is
directed into the filename which follows:

grep -v mozart music.db >temp

This writes all lines in ‘‘music.db’’ not containing (-v) the pattern ‘‘mozart’’, into
the file ‘‘temp’’.

Lines are limited to 255 characters; longer lines are truncated.

See Also
cat(C), tail(C), wc(C)

1 Printed 22 Feb 03Revised 13 May 1992

ProLine General Commands HELP(C)HELP(C)

Name
help - Get help

Syntax
help

Description
Help is a shell script that can be customized to display helpful instructions while
using the C-Shell (csh). Usually, this script simply aids in pointing the user in
the direction of the online help system provided by the man command.

Files
$/etc/help/csh - the help file,
$/etc/help/whatis - a summarization of commands.

See Also
man(CT), manps(CT), whatis(CT)

1 Printed 22 Feb 03Revised 13 May 1992

ProLine General Commands HIST(C)HIST(C)

Name
hist - System history

Syntax
hist year

Description
Hist, a shell script, displays a summary of changes made to the system software in
the course of a given year. The year is a value minus any century information (e.g.
‘‘92’’, not ‘‘1992’’). Example:

hist 92

In this example, hist displays the system changes file for the year 1992.

Files
$/pub/proline/history.* - system change history files.

1 Printed 22 Feb 03Revised 12 May 1992

ProLine General Commands IF(C)IF(C)

Name
if - Conditional command execution

Syntax
if expression then [command1 [else command2]]

Description
If tests the expression, and if it results in a true value, performs command1
following the then keyword. If the expression is false, and an else keyword is
given, command2 is performed.

Multiple Lines

If statements can span more than one line in order to issue multiple commands. This
is an example of a compound if statement:

if expression then
 command
 command
 ...
endif

The endif keyword denotes the end of a compound if statement. Here’s an example
using an else option:

if expression then
 command1
 ...
else
 command2
 ...
endif

Expressions

Typical expressions include:

x = y Equality (== can be used)

x <> y Inequality (!= can be used)

x > y Greater

x < y Smaller

x >= y Greater or equal

1 Printed 22 Feb 03Revised 12 May 1992

ProLine General Commands IF(C)IF(C)

x <= y Less or equal

-f file Existence of a file

The values for x and y in expressions can be any kind of argument, including variables.
Multiple expressions can be included as well, with parenthesis used for precedence.
To mix expressions logically, separate them with these two keywords or symbols: and
(&&), or (||). To negate the result of an expression, precede it with the keyword
not (also !). Example:

if $a = $b then echo TRUE else echo FALSE

Another example:

if $time[0] = "Sun" and -f workfile then
 echo It is Sunday AND the workfile exists!
else
 echo EITHER it is not Sunday
 echo OR the workfile does not exist.
endif

Nested Statements

Nested if statements can be used in a script, as shown:

if (expr1) then
 if (expr2) then
 echo "expr1 AND expr2 are true"
 endif
else
 echo "Either expr1 OR expr2 is false"
endif

Each if must have a matching endif.

See Also
csh(C), scripts(M)

2 Printed 22 Feb 03Revised 12 May 1992

ProLine General Commands IMPORT(C)IMPORT(C)

Name
import, export - Text file conversion

Syntax
import file1 [file2]
export file1 file2

Description
Import is used to filter linefeeds after carriage returns from a text file. This is
handy after uploading a text file containing unnecessary linefeeds after carriage
returns from operating systems such as CP/M or MS-DOS.

Import reads file1 and writes the filtered output to the optional file2. If
file2 is omitted, import just converts file1.

Export is used to append linefeeds after carriage returns just prior to downloading
to an operating system which needs CR/LF newline sequences.

Note
Export is not as flexible as import in that you must specify file2 when exporting
file1.

Some transfer protocols include newline conversion.

See Also
rx(C), rz(C), sx(C), sz(C)

1 Printed 22 Feb 03Revised 12 May 1992

ProLine General Commands INSPECT(C)INSPECT(C)

Name
inspect - Inspect contents of files

Syntax
inspect [options] file

Description
Inspect describes the contents of file. If file is determined to be a NuFX
(‘‘SHK’’), Compact Pro (‘‘CPT’’) or StuffIt (‘‘SIT’’) archive, its enclosed files,
folders and disk images are listed. If file is determined to be a CompuServe GIF(tm)
format graphic, information about its size and color depth is provided.

Inspect takes two options:

-b displays Binary II or MacBinary information if present.

-i identifies the file as a particular type, but does not list its contents. If the
last argument given to list begins with ‘>’, it redirects output to the filename
that follows.

Notes
Full support for self-extracting CPT and SIT archives is provided, but support for
self-extracting SHK archives created by GS ShrinkIt is not.

Primitive support for ‘‘MOD’’ format music files is provided in that files beginning
with ‘‘MOD.’’ or ending with ‘‘.MOD’’ list their internal music score names.

The ProDOS 8 filetype lookup table has been placed at the end of the program to
facilitate modification or expansion by any BASIC programmer.

Inspect uses 16-bit CRC routines placed in the public domain by Jim Ferr.

Diagnostics
‘‘Could not load OMM module CRC’’ -- the support module $/sys/modules/CRC could not be
found and loaded into memory.

‘‘NuFX master header damaged’’ -- The file is determined to be a SHK archive, but its
master header is not in the proper format.

‘‘NuFX local header damaged’’ -- The file is determined to be a SHK archive, but one or
more of its entries are not in the proper format.

‘‘StuffIt archive header damaged’’ -- The file is determined to be a SIT archive, but
its master header is not in the proper format.

Files
$/sys/modules/CRC - support module with CRC routines

1 Printed 22 Feb 03Revised 28 September 1993

ProLine General Commands INSPECT(C)INSPECT(C)

See Also
unpar(C)

Author
Jon C. Thomason (jonct@pro-applepi)

2 Printed 22 Feb 03Revised 28 September 1993

ProLine General Commands IT(C)IT(C)

Name
it - InteleTerm Pro terminal program

Syntax
it [name]

Description
InteleTerm Pro, it, is a full-featured terminal program for local console use. It
contains many commands and features to simplify your online session. It also has the
ability to run special scripts containing commands to automate a login procedure and
other online tasks.

Invoking it brings up a help screen showing the commands you can enter. If you have
a compiled script you wish to invoke, you can include its name as an argument to have
it invoked upon startup. Example:

it bix

This would launch it, which would then attempt to run the ‘‘bix’’ script. (See the
manual entry for itc, the InteleTerm Compiler, for more details on it scripts).

While offline, it displays a command prompt at the top of the screen. Simply enter
one of the command letters to invoke a command. While online, you can invoke those same
commands from terminal mode by holding down the Apple (or Command) key while pressing a
command letter. You can return to terminal mode by pressing the Space Bar at the
Command prompt.

You are free to leave it while online to use the shell. To return to your online
session, simply invoke it with no arguments.

Learning to use it is best done by use.

See Also
itc(C), sm(C)

1 Printed 22 Feb 03Revised 12 May 1992

ProLine General Commands ITC(C)ITC(C)

Name
itc - InteleTerm Pro script compiler

Syntax
itc [name]

Description
Itc is a script compiler that generates scripts for use with it, the InteleTerm Pro
terminal program.

Without arguments, itc asks for the name of a script to compile. You can also the
script name in the command line by including its name only (not the full path) as an
argument to itc. Leave off the .src extension as itc adds it for you. Example:

itc bix

This compiles the ‘‘bix.src’’ script, writing the compiled output to ‘‘bix’’. You can
also use the [C]ompile command from the [S]cript menu within it.

Creating and Editing Scripts

It scripts can be created with your text editor. From the [S]cript menu in it,
choose [N]ew to create a new script, or [E]dit to edit an existing one. Again, leave
off the ‘‘.src’’ extension when referencing your script.

The format of a script file follows these rules:

1. Each instruction is on a line by itself

2. Labels are declared on lines by themselves and a colon (:) follows the label
name.

3. When labels are referenced, the colon is not used.

4. Indenting is optional, but aids in keeping your script readable.

5. Quoted text arguments can have control characters imbedded in them by entering
a caret (^) followed by the letter (upper or lowercase) of the corresponding
control character. For example, to put a carriage return at the end of a
PRINT instruction, you would use:

 PRINT "Testing^M"

6. Quoted text arguments can include characters like quotes, carets, and
backslash by prefixing them with the backslash (\).

7. Text arguments containing spaces must be put between quotation marks,
otherwise the program will only recognize the first word in a series of words.

1 Printed 22 Feb 03Revised 30 January 1994

ProLine General Commands ITC(C)ITC(C)

8. A space character must separate a command from its argument(s).

9. Comments can be placed on lines by themselves following any of these comment
characters: pound (#), semi-colon (;), apostrophe (’), asterisk (*).

Scripting Language

The script language consists of these commands:

do label Causes script execution to begin executing instructions at label. When
a return instruction is encountered, program flow resumes with the next
instruction following the do command.

term Temporarily pauses script execution and puts you into terminal mode.
When you exit terminal mode, script execution continues.

goto label Diverts script execution to a certain label. Unlike do, a return will
not return to the instruction after the goto.

clear Clears the screen and puts the cursor in the upper left corner.

print "text" Displays text on the screen, but is not sent to the modem. Add ‘‘^M’’
at the end of the text to issue a carriage return.

speed bps speed will set the bits per second rate for use with it. Values for
bps are 300, 1200, 2400, 9600, 19200, 38400, and 57600.

echo mode Sets up local or remote echo modes for terminal mode. Arguments for
mode are on and off. Echo on is half duplex (local echo). Echo off
is full duplex (remote echo).

dial number Dials a phone number.

connect Attempts to connect with a host computer after dialing. Use the IF
statement after executing connect to determine if connection was
successfully established.

return Causes script execution to return to the line following the
corresponding do instruction.

wait "text" Halts script execution until ‘‘text’’ has been received. This is used
for handshaking on incoming data. Use the if instruction to determine
if pattern was found.

if condition [then goto] label
IF is used to test the most recent function performed by the script,
such as attempting to connect with a host computer, sending or receiving
a file, or handshaking on incoming text. Example conditions for use
with IF are:

2 Printed 22 Feb 03Revised 30 January 1994

ProLine General Commands ITC(C)ITC(C)

if found goto ... if ok goto ...
if connect goto ... if good goto ...
if failed goto ... if bad goto ...
if true goto ... if success goto ...
if false goto ... if no goto ...
if yes goto ...

Place not or no in front of a condition to negate it, such as ‘‘if not
found goto label’’. The words ‘‘then’’ and ‘‘goto’’ are optional. If
the condition is true, the script branches to the label referenced at
the very end of the if instruction.

send "text" Works like print, except sends text to the modem and not to the screen.
If you need to send a carriage return, use ‘‘^M’’ (caret followed by the
letter M).

hangup Disconnects the modem with the host, and hangs up the phone.

sendfile file [delay [char]]
Send the text in file, line by line. Output is paused after each line
for delay seconds if included. The next line is not sent until char
is received if the optional char argument is included. Example:

sendfile bletch.txt 2 :

This sends the file ‘‘bletch.txt’’ line by line, with an interline
delay of 2, and waits for a colon from the host before each line is
sent.

break Sends a modem break tone.

sleep seconds Causes script execution to pause for the seconds specified, then
execution resumes.

exec command Executes the system command line in command. This can be used to run
any program on the system, such as external protocols, or a C-Shell that
invokes a shell script. Examples:

exec "csh cd /profile/mail; rm tempfile"
exec "sz filename"
exec "csh source batch.script"

Commands with spaces must be enclosed in quotation marks.

When the command is complete, control returns to it and the script
continues. ‘‘If’’ statements can be used to test the success of the
exec command.

run script Lets you run a different script file from within a script.

3 Printed 22 Feb 03Revised 30 January 1994

ProLine General Commands ITC(C)ITC(C)

end Causes a script to stop running. If you’re online, you’re taken right
to terminal mode.

exit Causes the script to stop running and forces it to quit.

printer mode Specifies whether any output which is shown inside the terminal mode
window will be sent to the printer or not. Values for mode are on and
off. Printer on sends output to the printer, while printer off does not.

emulate terminal
Initializes terminal emulation for the named terminal template file.

Function Key Labels

Labels that begin with the name ‘‘fkey’’, followed by a digit from 0 to 9 (e.g.,
fkey5:, fkey8:, etc.), denote entry points in loaded scripts when the Command key and a
digit are pressed in terminal mode. Issuing a function key is like choosing the Goto
command from the Scripts menu in it and selecting a label. As soon as the script
ends, control returns to terminal mode. This makes it possible to create ten
key-triggered functions in each script.

Files
$home/src - directory containing scripts.

See Also
it(C)

4 Printed 22 Feb 03Revised 30 January 1994

ProLine General Commands LOG(C)LOG(C)

Name
log - Display log files

Syntax
log [option]

Description
Log displays the various contents of the system’s log files. Log, without any
options, displays actual logins only. Other events can be shown selectively by
specifying the following options:

-a Show entire log, same as cat $spool/logs/syslog.

-c Lists all cron and kybd tasks that were issued.

-g Display log of guest callers only.

-m Display the mdss log, same as cat $spool/logs/mdsslog.

-M Lists only the major entries in the mdss log.

-mp Prints only mdss POLL attempt entries.

-mm Prints only MDSS login entries.

-n Lists the newsgroup processing log, same as cat $spool/logs/newslog.

-s Display the server’s log, same as cat $spool/logs/servlog.

-u Display the new user log, same as cat $spool/logs/adduser.log.

Example:

log -c

shows the log of cron events and local commands that have occurred.

Files
$spool/logs/adduser.log - new user log file,
$spool/logs/mdsslog - mail delivery subsystem log file,
$spool/logs/newslog - newsgroup log file,
$spool/logs/servlog - file server log file,
$spool/logs/syslog - system log file.

Note
Because log is a shell script, multiple options cannot be selected.

See Also
calls(C), uutraf(NET)

1 Printed 22 Feb 03Revised 13 May 1992

ProLine General Commands LOGIN(C)LOGIN(C)

Name
login - Sign on

Syntax
login

Description
The login program is used when a user initially signs on, or it may be used at any
time to change from one user to another without having to disconnect.

After a normal system startup sequence, the login program is executed. Its job is to
answer the phone when remote callers dial the system, prompt them for a login code and
password, and then allow them into the system if the codes are valid. While waiting
for a call, it displays the current time on the screen. Login is also responsible for
handling scheduled cron tasks.

Commands While Waiting

While waiting for a call, the console operator can instruct login to process a
command by pressing the ‘!’ key. Login reads a command line from the operator and
executes the first command passing forward any arguments. For example, entering
‘‘!ctime’’ causes login to run the ctime program as a process. When ctime exits,
control returns to login.

Other keys that login recognizes while waiting are:

RETURN Allows the operator to log into the system locally

SPACE Toggles the screen saver on and off

ESCAPE Exit to BASIC

In addition, certain keys can be configured to invoke macro commands to perform a
variety of functions without actually having to login. See the Resources section of
this manual entry for more details.

Task Scheduling

Login includes an internal task manager called cron which runs once a minute.
Cron scans the file $/etc/crontab for tasks to perform at certain times and executes
them in a way similar to the ‘!’ command for local console commands. (See cron for
more details).

Any processes that login invokes are logged with the date and time of execution,
including elapsed time. Local console processes are labeled ‘‘local’’ while cron
processes are labeled ‘‘cron’’ in $spool/logs/syslog.

1 Printed 22 Feb 03Revised 21 October 1993

ProLine General Commands LOGIN(C)LOGIN(C)

Intercepting Phone Calls

Unless otherwise instructed (see Resource File below), login answers a call on the
first ring and attempts to connect. The connection speed is verified with a required
rate, if specified. If the connection is slower than desired, the $/etc/lowbps file is
displayed, and login disconnects to wait for another call.

After login answers a ringing phone line and successfully connects with another
computer, it displays the file $/etc/herald. This file contains the name and location
of the host system. The caller is prompted to enter a valid login name.

After a valid login name is given, login scans $/etc/passwd for a matching entry.
Once found, the information for that account is read in. If the account is a non-root
user, and the file $/etc/nologin exists, login prints its contents on the user’s
terminal and disconnects. This stops users from logging in when the system is about to
go down, or when it is closed to user traffic.

If the interpreter entry for the login is a quoted message, it is displayed, and the
caller is prompted to enter a login name again. (e.g., a ‘‘help’’ login attempt might
display a short message for signing on using a public account. Use adduser to create
a ‘‘help’’ login which would display the quoted message given as the interpreter).

Next, login prompts the caller for a password, if appropriate. Echoing is turned off
during the typing of the password, so it will not appear on any written record of the
session. However, if the encrypted password in the entry deciphers to ‘‘none’’,
password input is bypassed. This is usually the case for guest logins.

The user has three attempts to enter a valid login name and matching password. If the
caller fails, the file $/etc/badlogin is displayed, and login disconnects. Badlogin
contains information on how to contact the system administrator for assistance, or may
offer instructions for using a public account.

If all is well, the user is shown the previous sign on date, the message of the day
file ($/etc/motd), and if a guest, the welcome file ($/etc/welcome). Login then
executes a command interpreter according to the user’s password file entry. The current
working directory will be set to the user’s home directory.

Screen Saver

While login is waiting for a call or a command, it blacks out the local console
display after a period of inactivity. This prevents images from ‘‘burning’’ into the
screen. If a call comes in, a key is pressed, or a cron task starts up, the screen is
restored. The time is displayed at random positions while the screen is blank.

Resource File

Certain features of login can be adjusted by editing $/etc/rsrc/login.rsrc. The
format of the file is described by the following sample entries in the order required
(with comments added):

2 Printed 22 Feb 03Revised 21 October 1993

ProLine General Commands LOGIN(C)LOGIN(C)

30 Seconds before the screen blanks. Zero seconds disables the screen
saver.

<blank> Normally left blank, this line may contain a command line that is
executed whenever a caller logs out or a cron task completes. By
default, no command line tells login to scan for any letters that need
delivering, and if found it executes sendmail. Typically, a command line
would start with csh and the name of a shell script that contains a list of
commands to execute, including sendmail.

0 Speaker control. This feature allows you to control the modem’s speaker
via joystick position control. If this entry is 1, the direction of the
joystick affects the modem’s speaker output during connections.
Positioned to the left, the speaker remains silent.

300 Lowest connect speed allowed. If a caller connects at a speed lower
than this value, $/etc/lowbps is displayed, and login disconnects.

0 Console availability hold time. This is a feature for Apple IIGS hosts
only. This feature allows the administrator to lock the Caps Lock key
while the system is in use. When the system becomes available, a series
of beeps (the number determined by this entry’s value) is emitted,
holding the system until there is a keyboard response. Unlocking the
Caps Lock key, or setting this entry to 0, disables this feature.

!cmpqs Macro command keys. Each letter in this line corresponds to subsequent
lines that expand the macro key into commands. That is, the first line
following this one is for the ‘!’ character. The second is for the ‘c’
character, and so on. The macro lines must follow in the order that the
characters are given. Up to 26 macros may be defined. Shown here are the
defaults with comments in parenthesis (omit the comments):

 (for "!" -- usually nothing)
csh -c (for "c")
mail (for "m")
poll (for "p")
boot -q (for "q")
scan -l (for "s")

Pressing ‘q’ at the Waiting prompt expands into the ‘‘boot -q’’
command. This is because ‘q’ is the fifth character in the first line of
macro keys, and ‘‘boot -q’’ is the fifth line following. You can change
or edit the command line, then execute it by pressing RETURN. You can,
of course, add, delete, or change any these macros.

3 Console cancel key (ASCII). The default console cancel key is Control-C
(ASCII 3). This can be changed to any other character from ASCII 0 to
127. This cancel key is used whenever a macro is invoked.

3 Printed 22 Feb 03Revised 21 October 1993

ProLine General Commands LOGIN(C)LOGIN(C)

0 No answer flag. If set to 1, causes login to ignore any incoming calls.
It simply prevents the system from answering, allowing the modem to
remain operational for outgoing calls only.

0 Command line time-out. This value (in seconds) sets the duration of
inactivity at the Waiting command line prompt. If zero, no inactivity
checking is performed.

<blank> This line, normally blank, contains a comma-separated list of account
names that triggers a unique alert sequence. When a user signs on whose
login name is in this line, a series of beeps is generated at the
console. Then a second set of beeps follow, unique to that user. You
can distinguish certain users from others without having to look at the
console. This is useful for alerting you to troublesome callers.

Files
$/etc/rsrc/login.rsrc - Login resources,
$/etc/adm - Accounting,
$tmpdir/utmp - Accounting,
$/etc/crontab - Task table,
$/etc/herald - Login herald,
$/etc/motd - Message of the day,
$/etc/passwd - Password file,
$/etc/lowbps - Message indicating connect speed requirements,
$/etc/nologin - Stops non-root user logins,
$/etc/badlogin - Shown after three failed login attempts,
$/etc/welcome - guest welcome,
$/adm/*/environs - User’s terminal environment settings,

Diagnostics
‘‘Login incorrect,’’ if the name or the password is bad.
‘‘Account overdrawn,’’ when a caller has used up his monthly time allotment.
’’File or directory not found,’’ when the specified user’s directory or interpreter to
launch cannot be found.

See Also
adduser(ADM), cron(ADM), csh(C), passwd(C), plush(C), setenv(C)

4 Printed 22 Feb 03Revised 21 October 1993

ProLine General Commands LOGOUT(C)LOGOUT(C)

Name
logout - Terminate connection

Syntax
logout

Description
Logout breaks the connection with a caller. It cancels all processes and exits to
the login program, disconnecting the caller.

See Also
boot(ADM), csh(C), login(C)

1 Printed 22 Feb 03Revised 13 May 1992

ProLine General Commands LPR(C)LPR(C)

Name
lpr - Send files to the printer

Syntax
lpr [options] file...

Description
Lpr prints files to a locally connected printer. One or more files may be printed at
a time. The options are:

-i chars Send initialization characters to your printer before printing a file
(default is no initialization).

-s slot Sets the printer slot (default is slot 1).

-f Disables the formfeed (Control-L) sent after each file (default is enabled).

Lpr works with any type of printer interface.

Also See
cat(C), csh(C)

1 Printed 22 Feb 03Revised 3 November 1993

ProLine General Commands LS(C)LS(C)

Name
ls - List directory contents

Syntax
ls [options] directory...

Description
Ls lists the files in one or more directories. If no directory is given, files in
the current working directory are shown. Without options, ls displays the filenames
in a directory in five columns, sorted alphabetically.

Ls takes a variety of options:

-a displays all files in the directory, including the ‘‘hidden’’ files.

-l displays a ‘‘long’’ directory, showing file information for each filename.

Example:

total 4 for 821 bytes
-rw- txt 258 13-aug-85 23:11 dead.letter
drw- dir 512 19-aug-85 00:42 letters
-rw- txt 33 14-aug-85 20:46 patch
-rwx cmd 18 12-aug-85 16:43 login

The first line shows the number of files within the directory and the amount of
space (in bytes) occupied by them. For each line of file information:

 -rwx cmd 18 12-aug-85 16:43 login
 | | | | |
 | | | | name of file
 | | | |
 | | | date file was last modified
 | | |
 | | size of file (in bytes)
 | |
 | file type
 |
 d--- indicates a directory
 -r-- file can be read by owner
 --w- file can be written to by owner
 ---x file can be executed by owner

-n reports the number of files in the specified directory.

-s causes a long directory to express all size values in 512 byte blocks, instead of
bytes.

-F marks subdirectory files with a trailing ‘/’, and executable files with a trailing
‘*’.

1 Printed 22 Feb 03Revised 13 May 1992

ProLine General Commands LS(C)LS(C)

-p displays a directory in standard ProDOS format (full display, all information).
This option supersedes all others.

-i shows only invisible files (not available with the -l option).

In all forms except -p, ls supports output redirection to files. Example:

ls /heartbeat/city >file.list

This redirects the columnar output from ls on the /heartbeat/city directory into the
file ‘‘file.list’’.

Diagnostics
‘‘(more files exist than shown)’’ -- Too many files exist in the directory and all
their names could not be read into memory. If the ‘-p’ option is used, there is no file
count limitation.

See Also
dstat(C), setfile(C)

2 Printed 22 Feb 03Revised 13 May 1992

ProLine General Commands MAIL(C)MAIL(C)

Name
mail - ProLine mail

Syntax
mail [-m mbox]
mail [-n]
mail [-s] user ...

Description
Mail is an interactive electronic mail management system that lets you send, receive,
and store messages. Because of its interactive nature, mail is best learned by use.
To invoke mail, use any of the following examples:

mail Reads messages in your mailbox.

mail -m letters Reads messages in the file ‘‘letters’’.

mail -n This flag causes mail to display ‘‘No new mail’’ and exit if
your mailbox has not been changed since the last time you read
mail.

mail user Sends mail to ‘‘user’’.

mail -s Mail prompts you for the name of a user to send to.

The command levels in mail respond to single-key abbreviations for command names.
They are expanded for you automatically. A list of available commands is displayed by
typing a ‘‘?’’ at any prompt.

Upon entering mail, the mailbox will be scanned for all your messages. A report is
then listed which shows various information about each message, including the sender’s
name and the subject.

Reading Mail

mail recognizes the following interactive commands at the mail> prompt. To invoke a
command, enter the first letter of its name:

[RETURN] / [SPACE] Pressing the RETURN or SPACE keys advances you to the next
message, and displays it. (Displays the first message if none have
been read.)

Next Marks the current message for deletion, then displays the next
message. (Displays the first message if none have been read.)

Previous Displays the previous message.

Type <msgs> Displays the selected messages. The ‘‘current message’’ number
will be set to the last message printed.

1 Printed 22 Feb 03Revised 30 March 1994

ProLine General Commands MAIL(C)MAIL(C)

Again Displays the current message.

Headers <msgs> Prints a one-line header for the selected messages. The header
contains: a ‘*’ if that message is marked for deletion, the number
of the message, the number of characters in the message, the
sender’s name, and the subject.

List Lists headers for all the messages (same as Headers All).

Send Sends a message. You are asked to fill in the ‘‘To:’’ field with
the name of the recipient (enter nothing at all to cancel), and the
subject of the message. You may then start typing the body of your
message. (see Sending Mail below for more details)

Forward <msgs> Forwards selected messages to others. You address the message as
with Send above, and then enter some introductory comments of your
own which will appear at the start of the message. Once you leave text entry
mode, the forwarded message is appended into the outgoing message.

Reply to <msg> Sends a reply to a message. mail fills in the ‘‘To:’’, and
‘‘Subject:’’ lines of your reply. You have the option of entering the
addresses for additional recipients (if any) in order to send ‘‘carbon
copies’’ (Cc:).

Delete <msgs> Marks selected messages for deletion when quitting. Messages
marked for deletion will have a ‘*’ after their number in their
header. Deletion marks may be removed with the Undelete command.
Note: this only marks messages to be deleted later. Marked letters
are still accessible until you Quit.

Undelete <msgs> Removes the deletion marks for the selected messages.

Write <msgs> Writes the selected messages to a file. If the target file
exists, you are asked if the messages should overwrite it or be
appended to it.

View Views a file from disk.

Edit Allows you to edit a file while working in mail.

$ Edit Vars Invokes the editor on your ‘‘mailrc’’ file which defines variables
that you may use with mail. (See Variables below for details.)

! Shell Command Executes a command line you enter at the ‘‘!’’ prompt. Commands
can be anything that can be executed in a normal command line
shell, including invoking an interactive shell (csh -c for
example). When the command is completed, you can continue to enter
additional commands at the ‘‘!’’ prompt, or press Enter to return
to the current prompt in mail.

2 Printed 22 Feb 03Revised 30 March 1994

ProLine General Commands MAIL(C)MAIL(C)

Open Opens a new mailbox, allowing you to close the current one. If
the current mailbox has messages marked for deletion, you are asked
to confirm their removal before the new mailbox is opened and
processed.

Quit Quits mail. You are asked to confirm the removal of any
messages marked for deletion before quitting.

? (help) Shows a list of all the available commands.

The <msgs> argument to some commands may be one of the following:

All All of the messages in the current mailbox
Current Last message typed (same as RETURN)
Next Next message (current message + 1)
Previous Previous message (current message - 1)
First Message number 1 (the oldest message)
Last The highest numbered (most recent) message

Or <msgs> may be a list of numbers, as in these examples:

2 message 2
11-15 messages 11 through 15 (inclusive)
-15 first message through message 15
3- message 3 through the last message

Special Keys

All command levels in mail support the + and - keys which turn the --More-- prompt
on and off, respectively. Additionally, the mail> and send> prompts allow you to type
in a number (or numeric range) to display the specified messages from your mailbox.
Using the ‘‘;’’ key at any command prompt will list the headers of all messages in your
mailbox (same as the List command at the mail> prompt).

Mail Strategy

Here’s a strategy for reading and processing your mail efficiently using mail. Upon
entering mail, examine the report of your messages to get an idea of the kind of mail
you have, the sizes of various messages, and whether or not there are any which require
immediate attention.

If you don’t have any urgent messages, you can read each in turn with the Next command.
Once a message has been displayed, it is referred to as the ‘‘current’’ message. You
can reply to the current message with the command ‘‘Reply to Current’’; this begins an
outgoing message in response to the message you’ve just read.

Using Next automatically marks the current message for deletion, and then proceeds to
display the next message. If you press RETURN or SPACE to advance to the next message,
the status of the current message is not affected. You can, however, mark any message

3 Printed 22 Feb 03Revised 30 March 1994

ProLine General Commands MAIL(C)MAIL(C)

to be deleted later with the ‘‘Delete’’ command. You may also want to proceed to the
next one. If you want to read a message out of order, use the ‘‘Type’’ command
followed by the number of the message and a RETURN. Or, you can simply type in the
message’s number (or a range) at any prompt, followed by a RETURN.

In general, it is easier to deal with each message one at a time, as you read it,
although some people like to read all of their mail first, then go back and delete
and/or store away some of their messages.

When you are ready to leave mail, use the ‘‘Quit’’ command. If you have marked any
messages for deletion, you will be asked if you actually want them permanently removed.
You may save a message marked for deletion at any time with the ‘‘Undelete’’ command.

Sending Mail

Mail lets you send a message to one or more users on your local site, as well as to
users on distant sites on the network. To address a local message, you provide the
user’s account name (not the user’s actual name). You can specify a group of names
(each separated by a space) in order to send a single message to multiple users.
Network mail addresses can be entered using the ‘‘user@site’’ or ‘‘site!user’’
syntaxes.

After entering the address of the message, you are asked to fill in the ‘‘Subject:’’
field. Then, you’ll be placed in text entry mode. Anything you type that does not
start with your exit character (usually a period ‘‘.’’) is added to the body of your
letter. Word wrapping occurs at column 75. To exit text entry, type the exit
character at the beginning of a new line followed by RETURN.

The following interactive commands are recognized at the send> prompt, as well as from
text entry mode by prefixing them with the exit character (i.e., ‘‘.s’’ is the same as
typing ‘‘s’’ from the send> command prompt).

Add Continues to add text at the end of your message.

List Lists the header and body of your message.

Edit Calls up the editor for use with your message. After saving your
editing changes, you’ll be returned to the send> prompt for further
commands.

Include <msgs> Includes the bodies of the specified messages from your mailbox
into the message, prefixing each line with the prefix character as
defined in the $prefix variable (usually the > symbol).

Headers ... <msgs> Same as Include above, but it includes the header and body portions
of messages.

Forward <msgs> Includes the header and body of the specified messages without
formatting.

4 Printed 22 Feb 03Revised 30 March 1994

ProLine General Commands MAIL(C)MAIL(C)

Get Gets a file from disk and appends it to the end of the message.

Send Sends the message to all the specified recipients. If any
outgoing network addresses were specified, the file named
signature, if it exists in your home directory, is appended to
the end of the message.

Modify Modifies the To, Subject, Cc, and Bcc fields in the header of your
message.

To Specifies the target recipient (To) addresses.

Reply-To Specifies a Reply-To address for when the recipient of the letter
generates a reply, the reply will be sent to the address in this
field instead of the original author of the message.

Cc Specifies ‘‘carbon copy’’ (Cc) addresses.

Bcc Specifies ‘‘blind carbon copy’’ (Bcc) addresses. These are like
Cc’s, but only the users in the ‘‘Bcc:’’ field will be aware that
they received copies of your message. The recipients in the
‘‘To:’’ and ‘‘Cc:’’ fields will not be aware that additional copies
were sent.

View Views a file.

Write Writes the body of your message to a file (with the option of to
include the header).

$ Edit Vars Allows you to edit or peruse your variables. (See Variables
below for details.)

! Shell Command Execute a command line. earlier).

Open Opens a new mailbox.

Quit Quits without sending the message.

Messages are not actually delivered until you log off the system or issue the
sendmail command from the C-Shell.

Variables

Mail accepts variables as shortcuts for lengthy or hard to remember input. A variable
is a keyword that begins with a dollar-sign ($), such as $prompt. When used in areas
where text arguments are supplied, the values of these variables are inserted (except
in text input mode and the ‘‘Subject:’’ field of outgoing messages). Variables can
also be used to control and customize the behavior of mail.

5 Printed 22 Feb 03Revised 30 March 1994

ProLine General Commands MAIL(C)MAIL(C)

Some variables are defined for you automatically:

/ Contains the system’s startup prefix. (Cannot be deleted)

addsig If set to 1 (default), mail attaches your ‘‘signature’’ file to messages
you send.

askcc If set to 1 (default), you’re asked if you want to include all recipients in
the carbon-copy field of outgoing messages.

clear Controls the clearing of the screen at various points in mail. If set to 0,
disables any screen clearing. If set to 1 (the default), mail will clear
the screen upon entry and before any list, file, or message is displayed.

current Keeps track of the current message between sessions. Delete this variable to
disable this feature.

delmark The character used to mark deleted messages, usually ‘‘*’’.

escape If this variable is not defined or empty, your preferred editor will be
invoked for message input. By setting the escape variable to any character,
mail uses its built-in input mode for message composition. (You can still
invoke your editor later). The built-in editor accepts one line of input at
a time, until you enter a line that contains only the character stored in the
escape variable, which lets you ‘‘escape’’ from input mode. Escape sequences
may include one extra character which causes mail to exit input mode and
act on the next character as if it were entered at the send> prompt. The
default escape is ‘.’, causing mail to use the built-in input mode.

home The path to your home directory. (Cannot be deleted)

lastime This variable should not be changed. It is maintained by mail to keep track
of the last time you read any mail. Its purpose is to hold the date and time
(in a special decimal format) for use with the -n flag when mail is
invoked.

mail The path to your incoming mailbox. (Cannot be deleted)

nomail Controls exiting from mail if the mailbox is empty. If set to 0, invoking
mail with an empty mailbox leaves you at the mail> prompt. If set to 1, an
empty mailbox causes mail to report, ‘‘No mail,’’ and then quits.

org Holds the name of the user’s organization that is placed into the
Organization: field of outgoing messages.

prompt This character (or string) is displayed for each new line of input while in
built-in text input mode. (See escape).

quote This character (or string) is used to ‘‘quote’’ each line included from your
mailbox into a reply.

6 Printed 22 Feb 03Revised 30 March 1994

ProLine General Commands MAIL(C)MAIL(C)

replyto Holds an address that is placed into the Reply-To: field of outgoing
messages.

summary Controls the display of the message summary after entering mail. If set to
0, no summary is displayed. If set to 1 (the default), a summary of all
messages in your mailbox is shown. If set to 2, a summary of only the
current message to the last is shown.

wrtdel If set to 1 causes messages written to a file to be marked for deletion.
(default is 0)

The dollar-sign ($) introduces each variable used as input. If you wanted to write a
message to a file, you could enter:

mail> Write Current
to file: $home/tempfile

mail sees $home and substitutes it for the path to your home directory, saving you a
few keystrokes.

Another example: You regularly correspond with a group of writers. Typing in all the
names is a tedious task. Instead, you create a variable to make life much simpler.
Let’s say you’ve created your own variable called ‘‘writers’’ in your mailrc file:

writers=brock ryan dang rlouv davew garyw@site.com

To use it, follow this scenario:

mail> Send
To: $writers

Mail replaces your variable with its value, which actually ends up addressing the
message like so:

To: brock ryan dang rlouv davew garyw@site.com

Variables can be used to substitute any part of a pathname, address, or filename.
They’re not case-sensitive, and can reference other variables.

Files
$home/mailrc - variable assignments,
$/usr/*/signature - signature file,
$/adm/*/mailstop - prevents sending offsite mail.

See Also
sendmail(C), rcp(NET)

Author
Morgan Davis

7 Printed 22 Feb 03Revised 30 March 1994

ProLine General Commands MCINEWS(C)MCINEWS(C)

Name
mcinews - Poll MCI Mail for business news headlines

Syntax
mcinews [-d]

Description
Without arguments, mcinews displays two business and financial news headlines which
are updated every four hours by the MCI Mail information service.

With the -d argument, mcinews reads the resource file $/etc/rsrc/mcinews.rsrc for
information on how to dial MCI Mail, login, and download the daily business news
headlines.

The resource file contains four lines of information:

1-800-555-1212
mdavis//arglebop
2400
mdavis
pub/local/mcinews

These lines correspond to:

Phone The phone number to the MCI Mail service.

Acct Info Login name and password (separated by "//")

Speed The baud rate at which the connection should be made.

Local Acct Login name of the user on ProLine who owns that MCI Mail account (a
future version of mcinews may be able to capture that person’s mail on
MCI and forward it to the appropriate ProLine mailbox).

Pathname Pathname to the file that contains the headlines. If it doesn’t start
with a slash (/), the ProLine system prefix is assumed.

Files
$/etc/rsrc/mcinews.rsrc - resource file.

1 Printed 22 Feb 03Revised 16 May 1992

ProLine General Commands MKDIR(C)MKDIR(C)

Name
mkdir - Make a directory

Syntax
mkdir directory...

Description
Mkdir is used to make one or more directories. Directories, like filing folders,
contain files (usually related in some way) as well as other directories. For example,
suppose you wish to create a directory within your home directory to store
miscellaneous tidbits (as well as any simple desultory philippics) that might come your
way. To do so with the name ‘‘stuff’’, you would use:

mkdir stuff

To access files in your new directory, you would precede the filenames with ‘‘stuff/’’
(the ‘/’ being the delimiter). For example, to view a file in ‘‘stuff’’ from your home
directory, type:

cat stuff/filename

See Also
cd(C), dstat(C), ls(C), rmdir(C)

1 Printed 22 Feb 03Revised 13 May 1992

ProLine General Commands MORE(C)MORE(C)

Name
more - Browse text files

Syntax
more file...

Description
More is used to show the contents of a file, one screen at a time. Any type of file
can be displayed, but ASCII (TXT) and script (CMD) files will produce the only
meaningful results. For example,

more login

displays the contents of your login script. More than one file can be shown by
giving more a file list, such as:

more mailrc resume login

When at the -- More (xx%) -- prompt, the following commands are available (i
denotes a number):

i SPACE Display another screenful, or i more lines if i is specified.

i RETURN Display another line, or i more lines, if i is specified.

i ^D (Ctrl-D) Display 11 more lines. If i is given, the scroll size is set to
i.

i d Same as ^D (Ctrl-D)

i z Same as SPACE, except that i, if present, becomes the new default number of
lines per screenful.

 i s Skip i lines and then display a screenful.

i ^B (Ctrl-B) Skip back i screenfuls and then display a screenful.

i b Same as ^B (Ctrl-B)

e Edit the current file using the editor selected in setenv. When done editing,
return back to more.

= Display the current line number.

i :n Skip forward i files given in the command line, or to the last filename in
the list if i is out of range.

i :p Skip backward i files given in the command line, or to the first filename
in the list if i is out of range.

1 Printed 22 Feb 03Revised 16 May 1992

ProLine General Commands MORE(C)MORE(C)

:f Display the current filename and line number.

q Exit from more.

Bugs
Currently, more only works on files of 2048 lines of text or less. (The editors can
only edit files with 300 lines of text or less).

See Also
grep(C), lpr(C), tail(C)

Author
Mark de Jong (mdj@pro-mdj.cts.com)

2 Printed 22 Feb 03Revised 16 May 1992

ProLine General Commands MV(C)MV(C)

Name
mv - Move a file

Syntax

mv file... [target]

Description
Mv moves one or more files to another file or directory. The source file may be in
another directory, in which case a path must be given. Mv is useful for renaming a
file as well.

If the target is a directory, the source files are moved to files in the
directory using their original filenames.

If the destination file does not exist, it is created, and the contents of the source
files are moved.

If a source file is given, but no target file, the current working directory is
assumed as the target area, preserving the original filename, though mv refuses to
move a file to itself.

Example:

mv godel escher bach $/usr/mdavis

This moves three files from the current working directory to the directory
$/usr/mdavis.

mv tycho brahe

In this example, ‘‘tycho’’ is simply renamed ‘‘brahe’’. If ‘‘brahe’’ existed before
mv was used, it is deleted before the name change is done.

See Also
add(C), cp(C)

1 Printed 22 Feb 03Revised 16 May 1992

ProLine General Commands NEWS(C)NEWS(C)

Name
news - System news bulletins

Syntax
news [options] [-t item] [items...]

Description
News displays and manages system news bulletins (not to be confused with USENET
news). These bulletins are created by the system administrator reporting important
news about the system.

Without arguments, news displays any items that are new since the user’s last
session. New items are considered new for the entire session. In other words, each
time news is invoked, the same new items are shown until the user logs out.

An interactive mode (-i option) allows users and the administrator to browse all news
items. The administrator can also create, delete, and edit items interactively.

News recognizes a number of command line options discussed below. News item
arguments given in the command line can be the item’s index number, its corresponding
file name, or the subject that references the item. (When referencing an item by
subject, enclose it within quotes if it contains spaces).

Options:

-a All items. Causes news to consider all items new (unseen).

-c Disable cancel keys. During the display of news items in non-interactive
mode, cancel keys have no effect. This also forces a --More-- prompt at the
end of each item causing the user to acknowledge it before continuing.

-i Interactive mode. Various commands can be entered interactively. Type ? for
a list of commands.

-n News item list. This lists all items, showing their index numbers, file
names, dates, and subjects.

-s Reports only a count of the number of news items that exist.

-t item Touches (updates) a news item, making it the newest item. This is useful for
resurrecting an old item and making it new news.

While in interactive mode, only the super user can delete, edit, or add news items.

Notes
Editing a news item does not make it new.

News should be invoked whenever a user signs on. This is not done automatically by
the login program, as in older versions of ProLine. See csh(C) for details on the
cshrc script where an entry for news -c makes good sense.

1 Printed 22 Feb 03Revised 28 January 1994

ProLine General Commands NEWS(C)NEWS(C)

Files
$/sys/news/* - news files.

See Also
csh(C), mcinews(C)

2 Printed 22 Feb 03Revised 28 January 1994

ProLine General Commands OD(C)OD(C)

Name
od - Output file dump

Syntax
od [-a] file...

Description
Od displays the contents of a file in hexadecimal format, useful for inspecting the
structure of binary files. The output produced appears as follows:

0000- 61946301 76DEADBE ...EFFEEDAF
0080- D21CA1FA 1FA20EDF ...D4C00BFC

By default, only hex data is shown in a tight format that displays 32 bytes-worth of
data per line.

The -a option generates a looser format (16-bytes worth per line) along with an ASCII
display next to each line.

Note
Od is traditionally ‘‘octal dump’’, but normal people avoid octal.

See Also
cat(C), inspect(C), tail(C)

1 Printed 22 Feb 03Revised 3 November 1993

ProLine General Commands PAR(C)PAR(C)

Name
par - ProLine archive utility

Syntax
par [startdir] [filelist] [parfile]

Description
The par command allows you to archive up to 255 files into a single ProLine archive
(.par) file. For example, typing:

par $/etc/help $/etc/help update.par

packs all files in the $/etc/help directory to the file ‘‘update.par’’ in the current
working directory.

The arguments are:

startdir This is the path to the topmost directory containing files that will be
archived. That includes files in subdirectories found below startdir in
the directory hierarchy.

Using $/ is usually a good starting directory.

filelist This argument has special qualities. If it describes the path to a
subdirectory, all of the non-directory entries in that subdirectory will be
chosen for archiving. Note: this is not recursive.

If filelist is a text file, it contains a list of filenames (full or
partial paths) to indicate the files that should be archived. This file must
contain one pathname entry per line. (The find command can generate such a
file--and it can be used to create a list of files that descend through
nested directories).

parfile The parfile argument is the name of the archive file to create.

If any of these arguments are omitted from the command line, par prompts you for
them, even the entry of the list of filenames.

File Lists

Note that the files you choose for archiving must follow certain rules. The most
important is that you should never introduce a new path to a file that hasn’t had its
parent directory entered beforehand. For example, it’s okay to select the file
‘‘booga’’ in ‘‘$/ooga/booga’’, so long as you chose ‘‘$/ooga’’ before it. Also, none of
the entries can specify a file that resides outside of the startdir hierarchy.

Archives will not contain the full path to the original archived files. Therefore, the
person doing the unarchiving must be sure about where the contents of the archive will
be stored.

1 Printed 22 Feb 03Revised 16 May 1992

ProLine General Commands PAR(C)PAR(C)

Note
Par currently creates archives in the Binary II format, but this may not always be
the case. No compression is done.

See Also
find(C), unpar(C)

2 Printed 22 Feb 03Revised 16 May 1992

ProLine General Commands PASSWD(C)PASSWD(C)

Name
passwd - Change login password

Syntax
passwd [name]

Description
Passwd changes (or installs) a password associated with the user name (your own
name by default).

The program prompts for the old password and then for the new one, and the new password
must be typed twice, to forestall mistakes.

New passwords must be at least four characters long if they use a sufficiently rich
alphabet and at least six characters long if monocase.

Only the owner of the name or the root-user may change a password; the owner must
prove he knows the old password.

If ‘‘none’’ is selected for the new password, the user will not be asked to enter a
password when logging in (this is desirable for public accounts).

Files
$/etc/passwd - the password file.

See Also
adduser(ADM), eduser(C), gid(ADM)

1 Printed 22 Feb 03Revised 16 May 1992

ProLine General Commands PC(C)PC(C)

Name
pc - Programmable calculator

Syntax
pc [expr]

Description
Pc is a programmable calculator. It provides simple or very sophisticated number
crunching -- from basic adding-machine work to complex mathematical expression
evaluation.

Features

o Arithmetic Operators. +, -, / (division), * (multiplication), ^
(exponentiation), nested parenthetical ordering.

o Relational Operators. =, >, <, <>, >=, <=, AND, OR, NOT.

o Advanced Functions. SGN, INT, ABS, SQR, RND, LOG, EXP, COS, SIN, TAN,
ATN.

o String Functions. LEN, STR$, VAL, ASC, CHR$, LEFT$, RIGHT$, MID$.

o User Defined Variables. Up to 32 pre-evaluated or constant variables.

o Stack. Holds up to 32 values.

o History. A 100-entry command history allows you to select one or more
previous entries for additional processing. The history also maintains
the result of each operation at each point in time.

o Precision. Includes 38-digit floating point precision.

The functions adhere closely to the standard BASIC programming language syntax.

The Command Line

When invoked with the expr argument, pc evaluates the expression, displays the
result, and exits. Example:

pc 2 * 2 - 8
-4
_

When invoked without an argument, pc enters a command mode, allowing you to issue
multiple commands to do simple or complex calculations. This is the initial command
line prompt:

1 Printed 22 Feb 03Revised 16 May 1992

ProLine General Commands PC(C)PC(C)

pc [0] 1> _

The number in [square] brackets is the current result register. This register
holds the value of the last operation that pc performed. The number before the ‘>’
character is the line number of the next entry to be added to the history buffer.

Entering any number or numeric expression at this prompt causes pc to evaluate it and
change the result register accordingly:

pc [0] 1> 6502 + 65816
pc [72318] 2> _

If the command begins with an arithmetic operator (+, -, /, etc.), pc performs the
operation on the value contained in the result register. For example:

pc [72318] 3> - 65816
pc [6502] 4> _

Spaces are optional within expressions. They are needed only to delimit pc commands
from their arguments, if any.

Boolean Math

Boolean arithmetic is accomplished by entering Boolean expressions on the command line:

pc [6502] 5> "foo" > "bar"
pc [1] 6> _

Any true expression sets the result register to one, while a false expression sets it
to zero. Boolean operations against the result register are allowed by entering a
relational operator as the first argument on the command line.

Precedence

Use (parentheses) to enclose operations to be performed first. Operations buried
deepest within parenthesis (that is, parentheses inside parentheses) are performed
first.

Pc’s precedence rules are to collect and evaluate nested parenthetical expressions
first, then perform multiplication and division (left to right), followed by addition
and subtraction (left to right).

Commands

Pc recognizes the following commands:

2 Printed 22 Feb 03Revised 16 May 1992

ProLine General Commands PC(C)PC(C)

quit (or q). Quits pc.

clear (or cl). Clears memory, including the stack and all variables.
The result register is reset to 0.

history (or hist). Displays a history of the previous commands entered
and their results.

help (or ?). Shows a list of the available commands.

do x[,y] (or run). Tells pc to process history entries from x to y. If
y is omitted, pc processes line x only. Intermediate results are
shown after each entry is processed. All lines are processed,
except for lines containing do (or run) commands.

set var=expr (or let). Defines (or redefines) and sets the variable named var
to the evaluated expression expr. The value of var is obtained by
prefixing it with the character $. The result register is not
affected.

define var=str (or def). Defines (or redefines) the variable named var to the
string str. The string contains an expression which is not
evaluated until the variable is used later in an expression. The
value of var is obtained by prefixing it with the character $. The
result register is not affected.

print expr Evaluates the expression expr and prints the result. The result
register is not affected.

list Lists the defined variables and their current values.

push [expr] Pushes a value onto the stack. If no argument is given, the
current value of the result register is pushed. If an expression
argument is given, its value is pushed onto the stack. The result
register is not affected.

pull [var] (or pop). Pulls the last pushed value off the stack. If no
argument is given, the value pulled off the stack is stored into
the result register. If the name of a variable is given (whether
previously defined or not), the value is stored in that variable,
and the result register is not affected.

stack Displays the contents of the stack. The next item off the stack
is the last one listed.

Constants and Keywords

Pc comes with a constant for pi (3.141592653) referenced by the keyword PI. In
addition, the result register can be accessed in expressions by using the keyword
RESULT. Example:

3 Printed 22 Feb 03Revised 16 May 1992

ProLine General Commands PC(C)PC(C)

pc [1] 6> result * 3 * 3 * result
pc [9] 7> _

Notice how the initial value of result is retained throughout the entire evaluation of
the expression, resulting in 9. (1 * 3 * 3 * 1 = 9).

User Variables

You may define up to 32 variables for use in expressions. Variables are defined and
initialized using the set (or let) and define (or def) commands.

Variables initialized with set have their expressions evaluated first, and the result
is stored in the variable. That is to say, a variable defined with set will simply
hold a number. Example:

pc [9] 8> set answer = asc("Life, the Universe, ...")-34
pc [9] 9> print $answer
 42
pc [9] 10> _

Variables initialized with define retain their expressions as a constant value. The
result of the expression is evaluated at calculation time when the variable is given in
an expression. Here are two simple examples:

pc [9] 10> define faren = 1.8 * result + 32
pc [9] 11> define celsius = (result - 32) / 1.8
pc [9] 12> list
 $answer = 42
 $faren = 1.8 * result + 32
 $celsius = (result - 32) / 1.8
pc [9] 13> _

Unlike the variable answer, set in the previous example, faren and celsius retain their
actual assignment rather than being evaluated. They also make use of the RESULT
keyword so that their functions operate on the current value of the result register.

If the result register holds the value 9 degrees Celsius, then entering $faren on the
command line will convert the value to its Fahrenheit equivalent:

pc [9] 13> $faren
pc [48.2] 14> _

Conversely, entering $celsius changes the value back to Fahrenheit:

pc [48.2] 14> $celsius
pc [9] 15> _

4 Printed 22 Feb 03Revised 16 May 1992

ProLine General Commands PC(C)PC(C)

The Stack

The pc provides a 32-entry stack for temporary storage of numbers. You can push
values onto the stack and pull them off in last-in, first-out (LIFO) order. Using the
stack instead of declaring temporary variables can speed up multi-line computations.

Diagnostics
Typical diagnostic messages from pc are:

‘‘### syntax error’’
Instructions given are improperly formatted or not recognized.

‘‘### illegal quantity error’’
A value used with a function is out of range. For example, passing a value greater
than 255 to CHR$() causes this error.

‘‘### overflow error’’
A computation involved a number out of the range of the program. Pc can accept
numbers in the range of 1E-38 to 1E+38.

‘‘### division by zero error’’
Self-explanatory. This is not allowed.

‘‘### type mismatch error’’
A value passed to a function is not of the appropriate type. This occurs, for example,
when passing a string to a numeric function, e.g., SGN(‘‘a’’).

‘‘### out of memory error’’
The variable table is full.

Author
Morgan Davis (mdavis@pro-sol.cts.com)

5 Printed 22 Feb 03Revised 16 May 1992

ProLine General Commands PLUSH(C)PLUSH(C)

Name
plush - ProLine Users Shell

Syntax
plush

Description
Plush is a simple, flexible, and friendly shell environment for the typical ProLine
user. It employs a menu-style interface offering access to resources that one would
only be able to access from a more powerful shell, such as csh.

Using PLUSH

When plush is invoked, it presents a menu of commands. After a selection is made, the
appropriate task is performed. This can involve launching an application or performing
an internal function within plush, such as going into a submenu. Upon exiting a
launched application, plush resumes, displaying the last menu presented.

Special keys: To back out of a submenu and return to a previous menu, press a
‘‘backup’’ key. A backup key is any control character other than the user’s cancel
(interrupt) key. The backspace or RETURN keys are suggested as backup keys. Pressing
a cancel key halts a process and returns to the current menu prompt. Pressing ‘?’
shows a list of a menu’s commands. The ‘+’ and ‘-’ keys toggle --More-- prompting.

Plush can ask for a line of input as an argument to some menu functions. For
example, some disk utilities would require the name of a file to act upon. Plush
recognizes the characters $/ in inputs as a variable which expands to the ProLine
system directory (just like in csh).

Plush Menus

Menus are defined in a plush menu file. When invoked, plush attempts to locate a
menu file in this order:

1. A file named ‘‘plush.m’’ in the user’s $/adm directory.

2. A file named ‘‘plush.m.#’’, where # is the group ID of the user, in $tmpdir.

3. A file named ‘‘plush.m’’ in $tmpdir.

4. A file named ‘‘plush.m.#’’, where # is the group ID of the user, in $/etc.

5. A file named ‘‘plush.m’’ in $/etc.

This scheme allows the administrator to assign custom menu files to individual users,
groups, and others.

1 Printed 22 Feb 03Revised 24 February 1994

ProLine General Commands PLUSH(C)PLUSH(C)

Notes
Plush runs faster if it and its menu files are located on a RAM disk.

For details on designing custom menus, see plush(F).

Files
$/adm/*/environs - user’s environment settings,
$tmpdir/plush.env - temporary environment file.

See Also
csh(C), plush(F), setenv(C)

2 Printed 22 Feb 03Revised 24 February 1994

ProLine General Commands PS(C)PS(C)

Name
ps - Report process status

Syntax
ps [-defhmu] [-j id] [-k id] [-l module]

Description
Ps reports system module and active user processes. Without options, the -u flag is
assumed.

Options are:

-d | -h Select module information display format: decimal (-d) or hexadecimal (-h).

-e Show everything. A list of user (-u) processes and system modules (-m) are
both shown.

-f Full information. Lists are displayed with as much information as possible.
With this option, full pathnames are displayed with -u.

-m Show modules. Each entry gives a module’s index and ID number, size, address
in memory, modification date, name and version number.

-u Show user processes. (default)

-j id Show information for one module where id is either its index or ID (in
decimal).

-k id Kill a module where id is either its index or ID (in decimal). See
Warning. Super user only.

-l module
Load module by name. If the module name contains no slashes, it is
assumed to reside in $/sys/modules. Super user only.

Warning
Killing system-dependent modules can have unfortunate results. Loading modules
indiscriminately can cause serious memory errors.

Files
$/sys/modules/*

See Also
boot(ADM)

1 Printed 22 Feb 03Revised 18 October 1993

ProLine General Commands PWD(C)PWD(C)

Name
pwd - Print working directory name

Syntax
pwd

Description
Pwd prints the pathname of the current working directory. This is identical to the
following shell command

echo .

Upon logging in, the current working directory is set to what is called your ‘‘home’’
directory, the pathname contained in the shell’s $home variable. If you change
directories with the cd command, use pwd to report the new working directory.

See Also
cd(C), csh(C)

1 Printed 22 Feb 03Revised 16 May 1992

ProLine General Commands RESUME(C)RESUME(C)

Name
resume - Resume file generator

Syntax
resume

Description
Resume automatically produces a resume file for a user by asking a few questions that
have been defined by the System Administrator in a resource file. The user answers the
questions, and a resume file with that data is generated and stored in the user’s home
directory.

System Administrator Notes

A resource file, $/etc/rsrc/resume.rsrc, contains information for the resume program.
This resource file can be created and changed using one of the online ProLine editors.
A sample resource file follows:

5
Please enter some information about yourself.
Age:
Male or Female:
Occupation:
Computers Owned:
Hobbies/Interests:

The first line gives the number of questions in the file. The second line is a message
directed to the user. The balance of the file contains questions to be answered. Each
question begins on a new line.

Files
$/etc/rsrc/resume.rsrc - resume data file,
$/usr/*/resume - user resume files.

Author
Bob Lindabury (bobl@bobsbox.rent.com)

1 Printed 22 Feb 03Revised 16 May 1992

ProLine General Commands RM(C)RM(C)

Name
rm, rmdir - Remove files or directories

Syntax
rm file...
rmdir [-p] [-s] dir...

Description
Rm removes the entries for one or more files from a directory. Removal of a file
requires ‘‘destroy’’ permission in its directory, but neither read nor write permission
on the file itself.

If a designated file is a directory, it can only be deleted by rm if it is empty.

Rmdir removes entries for the named directories, including all files and
subdirectories within the directory itself. If the -p option is given, the name of
each file removed is printed first. If the -s option is given, the named directory
is purged, but the directory entry itself is retained.

See Also
mv(C)

1 Printed 22 Feb 03Revised 16 May 1992

ProLine General Commands ROT13(C)ROT13(C)

Name
rot13 - Rot13 file conversion utility

Syntax
rot13 [-h] infile [outfile]

Description
Rot13 encodes (or decodes) a text file, rotating each alphabetical character in the
file 13 places in the alphabet. Encoding a text file with rot13 prevents reading the
text without the special effort required to decode it. For example, offensive jokes in
the rec.humor.funny newsgroup are encoded using rot13.

Since the rot13 encoding is also self-decoding, a file encoded into rot13 format is
decoded in the same manner. A second pass over the file decodes it.

The optional -h flag skips the header on the infile. This prevents rot13 from
processing any initial header lines, up to the first blank line, processing only the
body of a message. In other words, header lines are left ‘‘as-is’’.

Rot13 prints its output to the screen, or to the file given as the outfile
argument.

Examples:

rot13 string.joke

processes the file ‘‘string.joke’’ with output appearing on the screen.

rot13 -h string.joke joke.rot

processes ‘‘string.joke’’ into the file ‘‘joke.rot’’, leaving the header alone.

See Also
safecom(C), uudecode(C), uuencode(C)

Author
Dean Fick (dean@pro-electric.cts.com)

1 Printed 22 Feb 03Revised 16 May 1992

ProLine General Commands RX(C)RX(C)

Name
rx - Receive files using XMODEM or YMODEM

Syntax
rx [options] [file...]

Description
Rx receives files using XMODEM or YMODEM transfer protocol.

If rx is used for receiving files with XMODEM, it invokes an XMODEM receive for each
file given on the command line. Files are assigned the names given in the command
line in the order in which they are received.

If YMODEM batch is used to receive files, the file argument(s) are optional. If
given, however, the files received are assigned the names given on the command line,
rather than those supplied by the sender.

A number of options control the transfer characteristics:

-b Binary II mode (Apple II). This causes rx to unwrap files in Binary II format.
This restores directory information unique to the file, and required by the ProDOS
operating system.

-c 128-byte blocks with CRC-16.

-d Double delay tolerance. This effectively doubles the time that rx allows for
responses over sluggish packet-switched networks.

-f Accept full pathnames from the sender -- the prefix to the file plus the file’s
name.

-k 1K blocks with CRC-16.

-l 4K blocks with CRC-16.

-p ProDOS mode (Apple II). Like the Binary II mode, this option employs an extension
unique to some Apple II terminal programs to transfer file information. This
scheme has been made obsolete by the Binary II standard, but is included for
compatibility with older programs.

-r Replace existing files.

-t Text mode. This mode converts end of line characters (newlines) to be compatible
with all operating systems. Include this option whenever text files are received
to ensure proper newline conversion. Newline characters are Control-M in Apple II
and Macintosh operating systems, Control-J in UNIX, and Control-M Control-J in
MS-DOS.

-v Verbose 1K and 4K modes. When the -k or -l modes are used, -v causes them to
initiate the transfer by sending ‘‘CK’’ or ‘‘CKL’’ to the sender. Normally, only
‘C’ is sent.

1 Printed 22 Feb 03Revised 17 May 1992

ProLine General Commands RX(C)RX(C)

-y YMODEM batch mode receive with at least 1K blocks and CRC-16. YMODEM-g mode is
not supported for receiving.

Without options, rx receives files in plain 128-byte XMODEM protocol using checksums
for error correction.

See Also
rz(C), sx(C), sz(C)

2 Printed 22 Feb 03Revised 17 May 1992

ProLine General Commands RZ(C)RZ(C)

Name
rz - Receive files using ZMODEM

Syntax
rz [options] [file...]

Description
Rz receives files using the ZMODEM transfer protocol. The file argument(s) are
optional. If given, however, the files received are assigned the names given on the
command line, rather than those supplied by the sender.

A number of options control the transfer characteristics:

-d Double delay tolerance. This effectively doubles the time that rz allows for
responses over sluggish packet-switched networks.

-f Accept full pathnames from the sender -- the prefix to the file plus the file’s
name.

-r Replace existing files.

-t Text mode. This mode converts end of line characters (newlines) to be compatible
with all operating systems. Include this option whenever text files are received
to ensure proper newline conversion. Newline characters are Control-M in Apple II
and Macintosh operating systems, Control-J in UNIX, and Control-M Control-J in
MS-DOS.

See Also
rx(C), sx(C), sz(C)

1 Printed 22 Feb 03Revised 27 May 1992

ProLine General Commands SAFECOM(C)SAFECOM(C)

Name
safecom - File encryption utility

Syntax
safecom mode infile code [outfile]

Description
Safecom, designed to help maintain safe communications channels, allows you to encode
and decode text files. Encoding and decoding is performed by means of a code key
(password) of your own choice. You must remember the code to be able to work with
encoded files.

The mode, either -e for encoding or -d for decoding, tells safecom how to process
the infile based on the code given. All output is sent to your terminal unless you
specify the optional outfile.

Note
This program is an adaptation of the original SAFECOM by Bill Parker (‘‘Hard Talk’’
columnist for ‘‘Softalk Magazine’’, R.I.P.). It was rewritten to operate under the
ProLine shell environment by Morgan Davis.

This program is slow. It can take quite a while to process a large file.

See Also
rot13(C), uuencode(C), uudecode(C)

1 Printed 22 Feb 03Revised 16 May 1992

ProLine General Commands SENDMAIL(C)SENDMAIL(C)

Name
sendmail - Send mail over the internet

Syntax
sendmail

Description
Sendmail sends a message to one or more people, routing the message over whichever
networks are necessary to deliver the message to the correct place. Other programs
provide user-friendly front ends; sendmail is used only to deliver preformatted
message files placed in the $/spool/mail subdirectory.

Routing Strategy

Local user addresses are determined by matching user directories in $/usr. Remote site
addresses are determined by matching directories in $/mdss.

If a local user address is unrecognized, an alias file ($/etc/aliases) is searched and
the route is aliased appropriately if a match is found. If a remote site address is
unrecognized, it is searched for in a path alias database ($/etc/paths) and the bogus
route is substituted if an alias is found. If a route still fails, its appended
domain, if included, is searched for in the path alias file. If a domain match is
found, the path is aliased appropriately, otherwise the letter is forwarded to the
authority site (governed by the system’s domain).

If a local address in an alias list begins with ‘~’ (tilde), it forces sendmail to
write into the named mailbox without verifying that the address is an actual user on
the system. See aliases(F) for details.

If sendmail is unable to find a valid route at this point, the message is forwarded
to a ‘‘smart host’’ (see below). If no smart host is designated, the message is
returned to the sender with an error message.

Special Handling

Sendmail also resolves local letters for users who have a forward file in their
home directory. The forward file contains e-mail addresses that replace the local
user’s address, thus forwarding letters to addresses other than (or including) the
local user. See forward(F) for more details.

It is also the responsibility of sendmail to deliver local messages with attached
binary segments, as formatted by the rcp program. Text portions of such messages are
delivered in the usual fashion while the binary portion is written into the addressee’s
user area. If a file collision occurs, the file is saved with a unique name.

Resource File

The resource file for sendmail contains entries that regulate its operation. Each

1 Printed 22 Feb 03Revised 16 September 1993

ProLine General Commands SENDMAIL(C)SENDMAIL(C)

entry is on a line by itself in the following order:

Line 1 Smart host. This line contains the complete path to a ‘‘smart host’’, that
is, one that can handle unresolved addressing. For example, this line might
contain ‘‘pro-neighbor’’. Any messages that can’t be resolved locally are
eventually passed on to ‘‘pro-neighbor’’, a smart host that attempts to
deliver the message.

Line 2 Busy flag. This line contains a number (0 for FALSE, and 1 to TRUE) to
determine if the modem should be placed off hook (busy) while sendmail
delivers mail.

Line 3 Progress level. This line contains a number (0 to 9) setting the level of
progress reporting while sendmail runs. Level 0 is minimal reporting,
while 9 is maximum reporting.

Sendmail displays a code for each letter delivered. These codes are:

(.) = local letter
(!) = offsite letter
(>) = local rcp letter
(F) = forwarded letter
(N) = news batch
(X) = bounced letter

Line 4 Aliases location. This line holds the pathname to the aliases database
file. See aliases(F) for details. Default is $/etc/aliases.

Line 5 Paths location. This line holds the pathname to the paths database file.
See map(F) for details. Default is $/etc/paths.

By setting the pathnames of the aliases and paths files to a RAM disk
location, sendmail’s performance can be increased. Be sure to place copy
commands in $/etc/rc to copy the files to the RAM disk after starting up.
See rc(ADM) for details.

Line 6 Favor smart host flag. This line contains a number (0 for FALSE, and 1 to
TRUE) to determine if sendmail should attempt to locate addresses
containing aliases in the paths database.

If set to 1, sendmail consults the paths database to lookup addresses with
domains that are not the same as the host’s. This is useful when the host
communicates with more than one domain authority.

If set to 0, any addresses with domain specifiers other than the host’s are
passed immediately to the smart host. This avoids extra passes through the
paths database which speeds up processing.

If a fatal operating system error occurs, sendmail displays error information,
followed by an alert sound at the console. This will last for approximately a minute
before the system is restarted. Press Control-C to cancel the error and enter BASIC.

2 Printed 22 Feb 03Revised 16 September 1993

ProLine General Commands SENDMAIL(C)SENDMAIL(C)

Files
$/etc/aliases - user alias database,
$/etc/paths - path alias database,
$/etc/rsrc/sendmail.rsrc - resource file,
$spool/mail - mail spool directory,
$/usr/*/forward - user’s forwarding address file.

See Also
aliases(F), forward(F), mail(C), mdss(NET), rcp(NET)

3 Printed 22 Feb 03Revised 16 September 1993

ProLine General Commands SERVER(C)SERVER(C)

Name
server - Internet file server

Syntax
server

Description
Server processes any file server requests found in the server’s mailbox file.
Requests are made by sending mail to server@host, putting the request in the Subject
field of the message. If the ‘‘Subject:’’ field is blank or not found, the request is
assumed to be in the first line of the body of the message.

Request commands are:

DIR [dir ...] Request directory listings

HELP Request help on using the server

INDEX [dir ...] Request index files for the server directories

MAP [host ...] Request a site map from the host’s archives

SEND [dir/]file ... Request a file from the server’s archives

The optional [dir] argument (without the brackets, of course) is the name of a
subdirectory area within the server’s main directory. The user needn’t specify a
complete path to the directory, only the directory’s name. Example:

index apple2

Should the directory itself contain another directory, the user can access it by using
a slash to separate the two (e.g. ‘‘index apple2/programs’’).

The server commands (except for HELP) can take multiple arguments. Example:

send file1 file2 dir/file3

If the MAP command is given without an argument, a directory listing of the map archive
area is sent.

Server Default Directories

By default, the server’s domain includes $/pub and all the directories within it, and
the site maps are assumed to be found in $/sys/maps. The administrator may choose
different paths to these areas by editing the server resource file
($/etc/rsrc/server.rsrc) and placing the complete path to the main server directory
in the first line of the file, and the complete path to the map directory in the second
line.

1 Printed 22 Feb 03Revised 16 May 1991

ProLine General Commands SERVER(C)SERVER(C)

Notes On Using INDEX and DIR

When these commands are used without any arguments, the entire structure within the
main server directory is referenced. This means that if DIR alone were specified, the
user would get directories for all the subdirectories inside of the server’s domain.
Likewise, INDEX alone would get indexes for all server areas.

When a directory argument is used with DIR or INDEX, the structure including that
directory and its domain is referenced. In short, these commands return the entire
tree (if no argument is given), or branches of the tree depending on the argument
given. Most server archives have directory structures only a level or two deep.

Setting Up The Server

As stated, the server’s domain is the $/pub directory and all files and subdirectories
within it. If your server archives contain numerous files it is best to organize them
into subdirectory areas.

Each area (including $/pub) should contain a file named INDEX which gives a quick table
of contents for that area. The INDEX file format is not rigid, though it should at
least contain this information:

o Name of the host system

o Name of the area

o Date when the index was last modified

o Contents of the area

Typically, the content list contains entries, one per file, giving the name of the file
and a short description. You can add more information if you desire, though it is best
to be as brief as possible, giving only the information necessary for browsing.

Access Protection

The server abides by the permission attributes assigned to directories in the server
archives. If a user requests a file from a directory that does not have read
permission, the request is stored in the queue file called $/etc/server.req (which can
be used as a shell script later on). The root user can validate each entry, removing
those without clearance, then launch the file as a shell script in order for the file
requests to be fulfilled. Example:

source server.req

The file’s type is text, and requires the shell’s ‘‘source’’ command in order to run.

2 Printed 22 Feb 03Revised 16 May 1991

ProLine General Commands SERVER(C)SERVER(C)

Server Message

Every outgoing file sent by the server can also include an optional message. This
message is stored in the $/etc/help/server.msg file. This could include short messages
such as rules regarding server usage, and so on. It should probably end with a dashed
‘‘cut here’’ line to let the requester know when the real file starts.

Server Log

The server maintains a log file ($spool/logs/servlog) listing the requests and when
they were processed.

Files
$/pub - server’s domain,
$/sys/maps - site map archive area,
$/sys/mail/server - server’s mailbox,
$spool/logs/servlog - server log file,
$/etc/server.req - server requests pending validation,
$/etc/help/server - server help file,
$/etc/help/server.msg - server message file,
$/etc/rsrc/server.rsrc - server’s resources.

See Also
rcp(NET), sendmail(C)

3 Printed 22 Feb 03Revised 16 May 1991

ProLine General Commands SET(C)SET(C)

Name
set, unset - Set or unset shell variables

Syntax
set [name=value...]
unset name...

Description
With no arguments, set lists all shell variables and their values. With arguments,
set assigns a value to the variable name given.

Example:

set hello=world

Sets the variable hello to the value ‘‘world’’. To access the value in this new
variable, prefix it with a dollar sign, as in:

1% echo $hello
world
2% ls $hello
world: directory not found

Multiple variables can be assigned all at once, as with:

set foo=bar seven=7 hard="disk drive"

To erase a variable, the unset command is used with one or more variable names:

3% unset hello
4% unset crash bang bigbang bam

Note that variables used in the value portion of a set command are expanded into
the value. This may not be desirable. In the case where the variable should not be
expanded during the assignment, escape the variable with a backslash (\):

set prompt="[\$cwd] "

See Also
csh(C)

1 Printed 22 Feb 03Revised 16 May 1992

ProLine General Commands SETENV(C)SETENV(C)

Name
setenv - Set environment

Syntax
setenv [-u user]

Description
Use setenv to bring up an interactive menu of options allowing you to define various
environmental preferences for your sessions online. Setenv updates your current
settings, and will also store them for future sessions. Each time you log onto the
system your environment is initialized as defined.

Options that you can modify:

o Cancel key
o Null delays after newlines
o Tabs: preserved or expanded
o Terminal height in lines
o Terminal width in columns
o Terminal to emulate
o Menu mode, or just prompts
o Single-key input mode: on or off
o Choice of text editor (standard or visual)

The -u option allows the super user to specify a different user.

Files
$/adm/*/environs - user’s environment settings.

See Also
stty(C), tset(C)

1 Printed 22 Feb 03Revised 15 May 1994

ProLine General Commands SETFILE(C)SETFILE(C)

Name
setfile - Set file attributes

Syntax
setfile [options] file...

Description
Sets attributes for one or more files. The options apply to all files listed.
Options are:

-a flags Sets or clears the file attributes. The flags string is composed of the
characters listed below. Attributes that aren’t listed remain unchanged.

D = Destroy enable
N = Rename enable
B = Backup needed
I = Invisible
W = Write enable
R = Read enable

Uppercase letters set the attribute to 1; lowercase letters clear it to 0.
For example,

setfile -a dnwbR Filename

Clears the Destroy, Rename, Write, and Backup bits, and sets the Read bit.
This means that the file cannot be deleted, renamed, or written to, but it
can be read from. The backup bit is also cleared, which tells backup
programs that the file doesn’t need to be backed up.

-at type Sets the auxilliary type. Type may be specified either in decimal or
hexadecimal form. Hexadecimal numbers must be preceded by a ‘$’ character or
‘‘0x’’ character sequence.

-c date Set the creation date. date is a string in one of the forms listed:

mm/dd/yy
"mm/dd/yy hh:mm"
"mm/dd/yy hh:mm AM"
"mm/dd/yy hh:mm PM"

representing the month (1-12), day (1-31), year (0-99), hour (0-23), and
minute (0-59). The string must be quoted if it contains a space. A period
(.) indicates the current date and time.

-m date Set the modification date. Date is the same format as for the -c option.
A period (.) indicates the current date and time.

-t type Sets the file type. Type may be specified as a decimal number, a
hexadecimal number when preceded by a ‘$’ or ‘‘0x’’ character(s), or a
3-character filetype mnemonic.

1 Printed 22 Feb 03Revised 16 May 1992

ProLine General Commands SETFILE(C)SETFILE(C)

-s size Sets the file’s size in bytes. Size may be specified as a decimal number
or a hexadecimal number when preceded by a ‘$’ or ‘‘0x’’ character(s).

Examples

setfile -a b -m \. foo.asm

Clears the backup-needed access attribute bit, and set’s the modification date to the
current date and time on the file ‘‘foo.asm’’. Note that the shell interprets a period
as a reference to the current working directory, thus the backslash (\) is used to
include the period for setfile.

setfile -m "07/03/90 02:25" mbox

Sets the modification date to July 3, 1990, and 02:25 A.M. on ‘‘mbox’’. Note that the
date string is quoted, since it contains a space, and that AM is assumed when the hour
is less than 13 and no AM or PM is specified.

setfile Foo -t bin Bar -s 4096 Baz -at 0x4000

Operates on the files Foo, Bar, and Baz, setting their types to BIN ($06), auxiliary
types to $4000, and their sizes to 4096 ($1000 or 0x1000) bytes. Note how filenames and
options can be intermixed.

See Also
dstat(C), ls(C), sweep(C)

2 Printed 22 Feb 03Revised 16 May 1992

ProLine General Commands SLEEP(C)SLEEP(C)

Name
sleep - Suspend execution for an interval

Syntax
sleep time

Description
Sleep suspends execution for time seconds. It is used to execute a command after a
certain amount of time as in:

sleep 105; command

Note
Non-root processes cannot suspend execution for more than 600 seconds (ten minutes).

1 Printed 22 Feb 03Revised 16 May 1992

ProLine General Commands SM(C)SM(C)

Name
sm - Send modem command

Syntax
sm [options] [command]

Description
Sm sends a modem command to the external modem attached to the computer. This is
handy for putting the modem into certain states, or temporarily adjusting the modem’s
characteristics beyond those installed during system initialization.

Sm recognizes the following options:

-h Hangup. Tells the modem to disconnect.

-p Pickup. The modem is instructed to lift the phone off-hook, making it appear
to be busy.

-r Reset. This initializes the modem.

-s mode Special. This activates system-specific features of the modem based on a
mode value. Current modes are:

3 = Turn off the modem’s speaker completely
4 = Speaker is on until a connection is made
5 = Speaker is on all the time
6 = Resets the modem (same as the -r option)
7 = Force serial port to always report carrier
8 = Serial port reports the actual carrier signal
9 = DTR line signal is lowered
10 = DTR line signal is raised

See Also
startup(ADM)

1 Printed 22 Feb 03Revised 16 May 1992

ProLine General Commands SORT(C)SORT(C)

Name
sort - Sort a file

Syntax
sort file...

Description
The sort command allows you to view the alphabetized contents of a file. Example:

sort vivaldi

This displays the contents of the file ‘‘vivaldi’’ in alphabetical order. If the last
argument starts with ‘>’, the sorted lines are written into that file.

Note
Sort handles files with 400 lines of text or less.

See Also
grep(C), split(C), wc(C)

1 Printed 22 Feb 03Revised 16 May 1992

ProLine General Commands SOURCE(C)SOURCE(C)

Name
source - Read shell commands from a file

Syntax
source file

Description
Source causes the shell to read lines from a file and execute them one at a time as
a batch operation. Processing terminates when the end of the file is reached, or when
appropriate commands instruct the shell to stop.

Source reads commands from any type of file; therefore, there is no need to change
the file’s type.

To invoke a shell script without having to use the source command, change the file’s
type to ‘‘CMD’’ with setfile.

See Also
csh(C), scripts(M), setfile(C)

1 Printed 22 Feb 03Revised 16 May 1992

ProLine General Commands SPLIT(C)SPLIT(C)

Name
split - Split a file into pieces

Syntax
split [-lines] file [name]

Description
Split reads file and writes it into pieces, as many as necessary, onto a set of
output files. The size of each piece is given in lines by the lines argument (or
1000 lines by default). The name of the first output file is name with aa
appended, and so on lexicographically. If no output name is given, x is used.

Note
Split refuses to overwrite any existing files.

See Also
add(C), wc(C)

1 Printed 22 Feb 03Revised 16 May 1992

ProLine General Commands STTY(C)STTY(C)

Name
stty - Set terminal options

Syntax
stty [option...]

Description
Stty is used to set certain I/O options on the current output terminal. With no
argument, it reports the current terminal settings. The following options are
recognized.

intr ^c sets your interrupt cancel key (default: Control-C). It must be a control
character or DEL. The argument to intr begins with a caret (^) followed by
the letter corresponding to the control character (e.g., ^C for Control-C). To
specify DEL, use ^?.

nulls 0 sets the number of nulls after a newline sequence (default 0). The argument to
nulls is an integer from 0 to 255, which specifies the number of null
characters to send.

lines 23 sets the number of lines your terminal screen has (minus one) and turns on
screen paging. When the specified number of lines have been displayed, you’ll
then be prompted with --More-- at the bottom of the screen. Pressing any key
will resume the display. You can turn paging off by using "stty lines 0".

-tabs tab characters are converted to spaces before printing. (default)

tabs tab characters are preserved.

Stty can be used with any or all of the options described above on the same line.
For example:

stty intr ^? nulls 3 lines 22 -tabs

This tells the system to recognize the DEL key as the interrupt character, send 3 nulls
after each line, turn screen paging on for every 22 lines of text displayed, and expand
tabs to spaces.

See Also
setenv(C), tset(C)

1 Printed 22 Feb 03Revised 16 May 1992

ProLine General Commands SWEEP(C)SWEEP(C)

Name
sweep - File utility

Syntax
sweep [directory]

Description
Sweep is patterned after the popular CP/M SWEEP utility which allows you to
manipulate files with much ease. Sweep lets you to perform many different
disk-related operations on single files as well as on batches of files.

To operate on a single file, simply advance to the file entry you desire and then press
a command key.

To operate on a batch of files, advance to each file desired, "tag" it, and then press
the letter of the command you want to perform on those files.

When sweep is invoked it first displays a help screen, and then reads all the
filenames from the current working directory. If you use a directory name with
sweep, as in sweep $/pub/stuff, the working directory is changed to the new
directory.

At this point you may use any of the following commands:

T tag a file (use control-T to tag all files)

U untag a file (use control-U to untag all files)

D delete the selected file(s)

C copy the selected file(s)

M move the selected file(s). This is the same as a copy followed by a delete.

V view the selected file(s).

P go to previous file in the list.

^P go to the previous directory. After pressing ^P you can type RETURN to
select the prompted directory, or edit the path presented to you to go to a
different area.

L change to a new directory location. If you’re currently sitting next to a
subdirectory entry in the file list, pressing L RETURN changes to that
directory.

A alters protection attributes for the selected file(s). This allows you to
‘‘lock’’ or ‘‘unlock’’ a file.

1 Printed 22 Feb 03Revised 2 November 1993

ProLine General Commands SWEEP(C)SWEEP(C)

S toggles sweep’s list sorting feature. Sweep comes up initially with all
the files in the list sorted alphabetically.

E edit the selected file(s). The editor you select using the setenv command
is used.

R rename the selected file(s).

Q quit sweep and return to the shell.

N create a new directory in the current directory. Enter the name of the new
directory when prompted.

? display the command list

Any key other than those listed will advance you from the current entry to the next
one. If you’re at the last entry in this list, advancing will take you back to the
first entry. Similarly, retreating beyond the first entry will take you to the last
entry in the list.

When supplying the target path for a copy or a move, simply give the name of a
directory if more than one file is tagged. If no files are tagged, you can either give
the name of a directory, or supply a new path and filename to copy it with a different
destination name.

See Also
cat(C), cp(C), ls(C), mv(C), rm(C), setfile(C)

2 Printed 22 Feb 03Revised 2 November 1993

ProLine General Commands SX(C)SX(C)

Name
sx - Send files using XMODEM or YMODEM

Syntax
sx [options] file...

Description
Sx sends files using XMODEM or YMODEM transfer protocol. A number of options control
the transfer characteristics:

-b Binary II mode (Apple II). This causes sx to wrap files in Binary II format.
This transmits directory information unique to the file, and required by the
ProDOS operating system.

-c 128-byte blocks with CRC-16.

-d Double delay tolerance. This effectively doubles the time that sx allows for
responses over sluggish packet-switched networks.

-f Send the file’s full pathname -- the prefix to the file plus the file’s name.

-k 1K blocks with CRC-16.

-l 4K blocks with CRC-16.

-p ProDOS mode (Apple II). Like the Binary II mode, this option employs an extension
unique to some Apple II terminal programs to transfer file information. This
scheme has been made obsolete by the Binary II standard, but is included for
compatibility with older programs.

-t Text mode. This mode converts end of line characters (newlines) to be compatible
with all operating systems. Include this option whenever text files are sent to
ensure proper newline conversion. Newline characters are Control-M in Apple II
and Macintosh operating systems, Control-J in UNIX, and Control-M Control-J in
MS-DOS.

-y YMODEM batch mode with at least 1K blocks and CRC-16. YMODEM-g is supported if
requested by the receiver.

Without options, sx sends files in plain 128-byte XMODEM protocol using checksums for
error correction.

See Also
rx(C), rz(C), sz(C)

1 Printed 22 Feb 03Revised 17 May 1992

ProLine General Commands SZ(C)SZ(C)

Name
sz - Send files using ZMODEM

Syntax
sz [options] file...

Description
sz sends files using the ZMODEM transfer protocol. A number of options control the
transfer characteristics:

-d Double delay tolerance. This effectively doubles the time that sz allows for
responses over sluggish packet-switched networks.

-f Send the file’s full pathname -- the prefix to the file’s location plus the file’s
name.

-t Text mode. This mode converts end of line characters (newlines) to be compatible
with all operating systems. Include this option whenever text files are sent to
ensure proper newline conversion. Newline characters are Control-M in Apple II
and Macintosh operating systems, Control-J in UNIX, and Control-M Control-J in
MS-DOS.

See Also
rx(C), rz(C), sx(C)

1 Printed 22 Feb 03Revised 17 May 1992

ProLine General Commands TAIL(C)TAIL(C)

Name
tail - Deliver the last part of a file

Syntax
tail [+|-number[lbc]] file

Description
Tail copies the named file to the standard output beginning at a designated place.

Copying begins at distance +number from the beginning, or -number from the end of
the file. Number is counted in units of lines, blocks or characters, according to
the appended option l, b or c. If no number is specified, -10 is assumed. When
no unit is specified, counting is by lines.

Examples

tail logfile

Displays the last 10 lines in logfile.

tail +10 logfile

Displays lines from 10 through the end of logfile.

tail -256c logfile >lastpage

Writes the last 256 characters in logfile to the file lastpage.

See Also
cat(C), grep(C)

Notes
Various kinds of anomalous terminal behavior may happen with binary data files.

1 Printed 22 Feb 03Revised 16 May 1992

ProLine General Commands TRIM(C)TRIM(C)

Name
trim - Trim mailbox headers

Syntax
trim

Description
Trim reads through your mailbox file and copies its contents into a file in your home
directory called ‘‘mail.t’’ (if it already exists, trim appends new letters to it).
While copying your mailbox, trim removes all header fields except for the following
which start with:

From
Date:
From:
Subject:
To:
Cc:
Bcc:

This significantly reduces the size of Internet-originated messages which contain a
number of header lines. When trim has finished pruning your mailbox, it asks if you
want it deleted. Normally, you would want it removed, as your mail has been copied
into ‘‘mail.t’’ in your directory.

To work with ‘‘mail.t’’ file as your mailbox, invoke the mailer as follows:

mail -m mail.t

See Also
mail(C)

1 Printed 22 Feb 03Revised 16 May 1992

ProLine General Commands TSET(C)TSET(C)

Name
tset - Set terminal emulation

Syntax
tset termcap

Description
Tset installs a terminal capability file (termcap) into memory for use with
programs that require special emulation functions, such as being able to move the
cursor, clear the display, turn on inverse video, and so forth.

The argument is the name of a termcap file residing in the directory $/sys/termcaps.
As shipped, this system has many popular terminals to choose from, though your system
administrator can create customized terminals for you if needed.

See Also
setenv(C), stty(C)

1 Printed 22 Feb 03Revised 16 May 1992

ProLine General Commands UNPAR(C)UNPAR(C)

Name
unpar - ProLine archive unpacker

Syntax
unpar [options] file ...

Description
Unpar unpacks the contents of a ProLine archive (par) file. For example:

unpar update.par

unpacks the contents of the file ‘‘update.par’’ into the current working directory.
Multiple par files can be unpacked by specifying them on the command line.

Options

-d Causes any directories created to be set to the current working directory’s
permissions. This is always the case for non-super users. Without the -d option,
directories created under super user access are set to the permissions stored in
the archive’s entry.

-l Lists the contents of the archive. Nothing is extracted.

-r Replaces existing files without warning.

If a file being unpacked already exists and the -r flag is not given, you are
prompted to replace the existing file. Press Y to replace it, or N to skip it.
Pressing R replaces the existing file and turns on the -r flag for you, causing
subsequent collisions to be replaced automatically. Press Q to stop immediately and
quit.

Note
Unpar can unpack any file in the Binary II format.

See Also
par(C)

1 Printed 22 Feb 03Revised 14 June 1993

ProLine General Commands UUENCODE(C)UUENCODE(C)

Name
uuencode, uudecode - Encode/decode a binary file for mailing

Syntax
uuencode source target

uudecode file

DESCRIPTION
Uuencode and uudecode are used to send binary files via uucp (or other) mail. This
combination can be used over indirect mail links.

Uuencode takes the named source file and produces an encoded version to the target
file. The encoding uses only printing ASCII characters, and includes a mode of 644 and
the target name for recreation on the remote system.

Uudecode reads an encoded file, strips off any leading and trailing lines added by
mailers, and recreates the original file with the specified mode and name.

The encode file has an ordinary text form and can be edited by any text editor to
change the mode or remote name.

Notes
The file is expanded by 35% (3 bytes become 4 plus control information) causing it to
take longer to transmit.

Not all file information is retained, therefore it is suggested that files first be
archived with compression to make up for the uuencoding expansion before being encoded.

The user on the remote system who is invoking uudecode must have write permission on
the specified file.

See Also
par(C), rcp(NET), unpar(C)

1 Printed 22 Feb 03Revised 16 May 1992

ProLine General Commands VEDIT(C)VEDIT(C)

Name
vedit - Visual text editor

Syntax
vedit file

Description
Vedit invokes a full screen editor on a text (txt) or shell script (cmd) file.
Adequate terminal emulation is required to use vedit.

Control-Key Editing Commands

^M Carriage return
^H Backspace
^U Cursor right
^K Cursor up
^J Cursor down
DEL Delete left
ESC Bring up the command line
^L Redraw screen
^A Start of line
^E End of line
^D Delete forward
^O Toggle overstrike/insert mode
^Y Yank line (cursor to right) to kill buffer
^X Delete entire line into kill buffer
^P Previous screen
^N Next screen
^W Toggle word-wrap
^T Top of buffer
^B Bottom of buffer
^G Get kill line, insert at cursor’s position
^I Insert a tab
^F Toggle tab mode (insert real tabs or spaces)

The Command Line

Pressing ESC will bring up the command line which recognizes the follow commands
(invoked by pressing the first letter of a command’s name):

New Clear the buffer (with the option of saving any changes)
Save Saves the buffer to the file.
Write Writes the buffer to a different file.
Append Appends a file to the end of the current buffer.
Find Finds a pattern of text.
Replace Replaces all occurrences of a pattern.
Info Information on the current buffer’s contents.
Quit Quit the editor (with the option of saving any changes).

1 Printed 22 Feb 03Revised 16 Sep 1993

ProLine General Commands VEDIT(C)VEDIT(C)

See Also
ed(C), edit(C), setenv(C)

2 Printed 22 Feb 03Revised 16 Sep 1993

ProLine General Commands VERSION(C)VERSION(C)

Name
version - Report version information on programs

Syntax
version [-hi] [path...]

Description
Version generates a report of program version information. The report includes the
official name of the program, version number, modification date, and author’s name.

If path references a file, version generates a report for that file. If path
references a directory, a report is produced for all the files in that directory level.
 A typically useful invocation is

version $path

which generates a report for all programs found in the executable search path.

Version information is obtained in the first 255 bytes between ‘‘@(#)’’ markers.
Therefore, entries are reported only for files that contain a version identification
string within the first 255 bytes of the program or shell script.

Normally, version ignores files that do not include an indentification mark.
Including the -i options instructs version to indicate files lacking version
information.

The -h option disables printing of the report header.

Report output can be redirected into files by including >file at the end of the
command line.

Without arguments, version displays the ProLine software version information.

See Also
whatis(CT)

1 Printed 22 Feb 03Revised 22 January 1994

ProLine General Commands WC(C)WC(C)

Name
wc - Word count

Syntax
wc [-lwc] file...

Description
wc counts lines, words and characters in one or more files. A word is a maximal
string of characters delimited by spaces, tabs, or newlines.

The -l option gives a line count. The -w option gives a word count. The -c flag gives
a character count. If no option is given, the default is to count the lines, words and
characters (-lwc).

See Also
grep(C), tail(C)

1 Printed 22 Feb 03Revised 16 May 1992

ProLine General Commands WHEREIS(C)WHEREIS(C)

Name
whereis - Locate source, binary, and/or manual files

Syntax
whereis [-sbm] name...

Description
Whereis locates source files, programs, and sections of the manuals for specified
files. The supplied names are first stripped of leading pathname components and any
trailing extension of the form ‘‘.ext’’; e.g., .c. Whereis then attempts to locate
the desired program in a list of standard places. If any of the -b, -s, or -m
option flags are given, whereis searches only for the designated option or
combination of options; binaries, sources or manual sections, respectively.

Example
The following example finds all files associated with the Conference System:

whereis -sbm cs

Files
$/etc/rsrc/man.rsrc - order and names of manual sections

See Also
find(C), man(CT), whatis(CT)

1 Printed 22 Feb 03Revised 14 September 1993

ProLine General Commands WHO(C)WHO(C)

Name
who - Who is on the system

Syntax
who [pattern] [>outputfile]
who am i

Description
Who with no arguments displays a full listing of all the members who have accounts on
the system. Shown are their login names, real names, locations, and last login times.

If who is given a pattern as a search condition, it prints out only those entries
in the member list where the pattern is matched. This is normally used for selection
of a single user by using their login name, but you may also find other parts of the
entry such as cities, states, or last login dates and times. If a pattern requires
space characters, enclose it in quotes.

When who finds an entry whose login matches the pattern, it displays that user’s
resume file if it exists in their directory. If the pattern given is ‘‘all’’,
who displays a full member list and attempts to print out the resume files for every
member.

If the last argument given is a file name beginning with a ‘>’, output from who is
directed into the file.

‘‘who am i’’ displays your Internet address and full name.

Files
$/etc/passwd - password file,
$/etc/adm - account database,
$/usr/*/resume - a user’s resume file.

See Also
eduser(ADM), gid(ADM), log(C)

1 Printed 22 Feb 03Revised 16 May 1992

ProLine

Typesetting Commands

Copyright 1994 Morgan Davis Group

ProLine Typesetting Commands MAKEBOOK(CT)MAKEBOOK(CT)

Name
makebook - Create a file containing the entire manual

Syntax
makebook bookfile [-d] [options]

Description
Makebook, a shell script, builds a file containing the entire online manual for
subsequent downloading and/or printing.

By default, bookfile is formatted for a PostScript printer (manps is used). Use the
-d option to create a dot-matrix formatted book (man is used).

Makebook automatically requests progress (-p) reporting and assigns titles (-t) when
generating output. Include options to pass additional options to man or manps.

Note
Since the file created by makebook will be uncommonly large, this script is not
accessible to non-root users by default. To curtail users from creating their own
books, it is suggested that the administrator create a single bookfile and place it
into a public area (e.g. $/pub) so users may download it and print it offline to their
own printers.

See Also
man(CT), manps(CT)

1 Printed 22 Feb 03Revised 6 May 1994

ProLine Typesetting Commands MAN(CT)MAN(CT)

Name
man - Prints pages in the manual

Syntax
man [options] [section] title ...

Description
Man locates and prints pages for the named title from the designated section in
the ProLine Reference Manual.

Since commands are given in lowercase, the title is always entered in lowercase.
Section names are always uppercase. If no section is specified, the entire manual
is searched for a matching title, and the first occurrence found is printed. You can
search through a group of sections by separating the section names with colons (:) on
the command line.

Man can display all entries for a specified section by using an asterisk (*) as the
title. A section argument must be given.

Options

The following options are recognized by man:

-a ‘‘All’’ mode. Displays matching titles found in all sections of search
list.

-d Formats output for a dot-matrix printer.

-l rows Sets the length of your output device in rows.

-p ‘‘Progress’’ mode. Prints the pathname of each title being processed.

-t title Assigns a title to the header (e.g. -t "Local Commands"). This is
mostly useful when printing an entire section.

-w cols Sets the width of your output device in columns.

Section Names

The names and general descriptions of the available manual sections are:

ADM Administrator’s Utilities

C Commands

CT Text Processing Commands

1 Printed 22 Feb 03Revised 26 March 1992

ProLine Typesetting Commands MAN(CT)MAN(CT)

CP Programming Commands

F File Formats

G Games

HW Hardware Dependent

LOCAL Local Utilities

M Miscellaneous

NET Network Commands

S Subroutines and Libraries

You can add other section names as you desire. Each new section, however, must follow
the standard section directory structure.

$/sys/man Directory Structure

The source files for the man program are kept in section directories in $/sys/man.
Each section is given its own directory, starting with the name ‘‘man.’’ and followed
by the section name (e.g. man.LOCAL). The source files are similarly tagged with their
section name (e.g. cat.C for cat, which resides in $/sys/man/man.C).

There is also an index file called index in $/sys/man. This index is a list of
aliases for titles that do not have their own source files. For example, ‘‘rmdir’’ does
not have its own source file, but is aliased to ‘‘rm’’ which includes documentation for
‘‘rmdir’’.

$/etc/rsrc/man.rsrc

The resource file for man, if it exists, contains a single line of all section names,
separated by colons (:). The sections should be listed in the order in which titles
should be searched. The default search order is:

ADM:C:S:NET:CP:CT:M:F:HW:LOCAL:G

Creating New Manual Entries

You can create new manual pages for utilities and scripts that you have developed.
Formatting is accomplished by inserting dot macros into the manual entry file. For
more information, refer to the manuals(F) entry.

2 Printed 22 Feb 03Revised 26 March 1992

ProLine Typesetting Commands MAN(CT)MAN(CT)

Printer Output

To redirect output to the printer, use:

man -d -w 96 C * >.printer

This example enables dot-matrix formatting for a printer capable of displaying 96
columns of text. All titles in the ‘‘C’’ (Commands) section would be printed.

To print manuals to a PostScript device, such as a laser printer, see manps(CT).

File Redirection

To redirect manual output to a file, use >filename as the last argument.

Files
$/sys/man/* - directory of manual sections and entries,
$/sys/man/index - index to aliased titles.

See Also
help(C), manps(CT), manuals(F), whatis(CT)

3 Printed 22 Feb 03Revised 26 March 1992

ProLine Typesetting Commands MANPS(CT)MANPS(CT)

Name
manps - Prints PostScript-formatted pages in the manual

Syntax
manps [options] [section] title ...

Description
Manps locates and generates pages for the named title from the designated section
in the ProLine Reference Manual. The output is in the PostScript language format, and
can be downloaded to any PostScript-compatible device (i.e. a laser printer or
typesetting machine).

Since commands are given in lowercase, the title is always entered in lowercase.
Section names are always uppercase. If no section is specified, the whole manual
is searched for a matching title, and the first occurence found is printed. You can
search through a group of sections by separating the section names with colons (:) on
the command line.

Manps can generate pages for all entries of a given section by using an asterisk (*)
as the title. A section argument must be given.

Options

The following options are recognized by manps:

-a ‘‘All’’ mode. Generates output for matching titles found in all
sections in the search list.

-c Generates a cover page.

-e Even-up entry. An even page is generated for an entry consisting of an
odd number of pages. The final page is blank, except for a header and
footer. Use this option when generating manuals for two-sided printing
where each entry will stand alone.

-E Even-up section. An even page is generated after printing an odd
number of pages in one or more entries (e.g. an entire section). Use
this when printing without the -e option.

-l rows Sets the maximum page length in rows.

-p Progress mode. Prints the pathname of each title being processed.

-t title Assigns a title to both the header and cover page (e.g. -t "Local
Commands"). This is mostly useful when printing an entire section.

-w cols Sets the maximum page width in columns.

1 Printed 22 Feb 03Revised 23 March 1992

ProLine Typesetting Commands MANPS(CT)MANPS(CT)

File Redirection

Manps supports output redirection. To redirect manual output to a file, use
>filename as the last argument. The output file can then be downloaded to a
PostScript-compatible device.

$/etc/psprep

The PostScript output definitions are defined in $/etc/psprep. The default settings
were chosen for maximum compatibility with most laser printers.

The default fonts used are Times Roman (12 pt.) for the standard text face, Courier (10
pt.) for monospaced displays, Helvetica (13 pt.) for subheadings and paragraph titles,
and Helvetica (14 pt.) for headers and footers.

Files
$/etc/psprep - PostScript prep file,
$/sys/man/* - directory of manual sections and titles.

See Also
man(CT), manuals(F)

2 Printed 22 Feb 03Revised 23 March 1992

ProLine Typesetting Commands WHATIS(CT)WHATIS(CT)

Name
whatis - Summarizes commands

Syntax
whatis command...
whatis -m [-q]

Description
Whatis looks up one or more commands in its database and gives the Name line taken
from the manual section. The man command can be used to get more information. If
* is given as the first argument, whatis displays the entire database.

The -m form causes whatis to make a new database. This is necessary whenever manual
entries are added or removed. If the optional -q option is included, whatis is quiet
while making the database -- no output is displayed.

Files
$/etc/help/whatis - database of manual headers.

See Also
help(C), man(CT), manps(CT)

1 Printed 22 Feb 03Revised 20 Mar 1994

ProLine

File Formats

Copyright 1994 Morgan Davis Group

ProLine File Formats ALIASES(F)ALIASES(F)

Name
aliases - Description of mail alias files

Description
When the mail system is unable to recognize an address, it can search two alias
databases for a valid address. Mail aliases come in two forms: user aliases and path
aliases. A user alias is one which replaces the username in a mail address.

For example, if the system did not recognize the user ‘‘jsbach’’, it would look up
jsbach in the user aliases database. If the system is instructed to send mail to
pro-sample!user, and it does not talk directly to pro-sample, it would look it up in
the paths database.

If the mailer can’t recognize a user or site name, and it can’t find a matching alias
in either of the two databases, it will forward the message back to the sender with an
error message.

User Aliases

The user alias database is the file $/etc/aliases. It contains lines in the form:

This is a comment
root: ~mdavis
sysop: ~mdavis
mdss: ~mdavis
postmaster: ~mdavis
rnews: ~rnews
null: ~ # Mail just evaporates
news-update: >/a/etc/news # Mail is written to a file
weather: >>/a/etc/wx # Mail is appended to a file
bblue: bblue@crash
friends: danield, tom, bob, jay@snnark.uucp,
 jim@fpr.com, ddavis, jholt@adobe.com
my-group: ~my.group

As shown, the username to match is followed by a colon, and the alias to replace that
name follows. Multiple addresses in the alias can be given; this denotes a
distribution list. If there are more names in a list than can fit on one line, extra
lines can be included on subsequent indented lines, as shown in the friends entry.

Comments can be inserted by prefixing them with the pound-sign (#). Anything following
the pound-sign up to the end of the line is ignored.

If a message was addressed to ‘‘bblue’’, it would be replaced with ‘‘bblue@crash’’ and
passed back to the mailer for routing through the ‘‘crash’’ site.

If a local address in the list begins with a tilde (~), it forces sendmail to write the
message into the named mailbox without verifying that the address is an actual user on
the system. For example, the my-group entry is aliased to ~my.group. Any mail sent to
my-group is added into the $/sys/mail/my.group mailbox, even though no user exists with

1 Printed 22 Feb 03Revised 30 March 1994

ProLine File Formats ALIASES(F)ALIASES(F)

that account name. If no mailbox names follows the tilde, letters to that alias are
discarded.

If an address in the list begins with >, the letter is written into the pathname that
follows, replacing it if it exists. If the address begins with >>, the letter is
appended to the pathname that follows.

Path Aliases

The path alias database is the file $/etc/paths. It contains lines formatted in the
same manner as user aliases. Example:

.cts.com: crash!*
alphalpha: pro-angmar!alphalpha!*
baron: pnet07!baron!*
cerf.net: pro-nbs!pro-fred!cerf.net!*
crash: crash!*
pro-aasgard: pro-aasgard!*

The sitename to match is followed by a colon, and the alias to replace that name is
last. The asterisk shows where the remainder of the path should be placed into the
address.

Comments can be included following the pound-sign (#).

If a message was addressed to ‘‘baron!jcurtis’’, the path alias entry would be
substituted and the full address would expand to ‘‘pnet07!baron!jcurtis’’.

Notes
An alias can contain another alias, as long as they don’t cause an infinite loop to
result. Nested aliases should be avoided, however, since it causes the mailer to work
extra hard to resolve a route.

To speed up searches through these databases, copy them to your temporary directory
($tmpdir) if it is a RAM disk. Using cp commands in your $/etc/rc startup script is
a good place to do this.

Files
$/etc/aliases - user alias database,
$/etc/paths - path alias database

See Also
domains(NET), forward(F), map(F), sendmail(C)

2 Printed 22 Feb 03Revised 30 March 1994

ProLine File Formats CS(F)CS(F)

Name
cs - Conference System file formats

Description
Messages in the conference system are stored in a four-layer directory hierarchy:

 CS Main Directory
 / | \
 conference conference conference
 / | \ | / \
topic topic topic topic topic topic
 | | | | | |
msgs msgs msgs msgs msgs msgs

The conference system structure begins with a main directory. This directory contains
subdirectories for each conference on the system. In turn, these subdirectories contain
subdirectories for each topic within the conference. A conference can have a maximum
of six (6) topics. Inside of the topic directories are the individual messages.

CS Resource file

Cs requires a resource file, $/etc/rsrc/cs.rsrc, which contains the pathname to the
CS Main Directory. The resource file also includes the text that is placed into the
Organization field of Internet-bound posts. A typical resource file might look like
this:

/a/cs
ProLine [pro-sol], Rancho San Diego, CA

The organization information should include the name of the host and its location.

Info Files

Each area in the CS structure may include a file called ‘‘info’’. Info files contain
information relating to the area in which they exist.

For example, upon entering the conference system for the first time, the $/sys/pcs/info
file is displayed. When joining a new conference, the info file that resides in the
conference’s directory (along with its index and topic directories) is displayed, if it
exists. Likewise, each topic directory can contain info files (along with the topic’s
messages).

Conference Index Files

Each conference has an index file called ‘‘i..’’ in the conference directory. The index
keeps track of the conference moderator’s name, the number of topics in the conference,
and other information. The format of these files is given here, though you should
never have to edit them directly. The csmod program handles any editing for you.

1 Printed 22 Feb 03Revised 6 May 1992

ProLine File Formats CS(F)CS(F)

A typical index file might look like:

mdavis
1,4
news
1,0,7
vaporware:sewall@uconnvm.bitnet:1
0,1227,1327
groups:pro-news-groups@pro-sol;pro.news.groups:0
1,911,985

The first line contains the name of the moderator.

The second line, first number, is a flag: 1=open conference, 0=closed conference. The
second number on that line is a count of the number of topics in this conference.

The lines that follow contain information about each topic. A topic has two lines of
information. The first line is the topic name (i.e. "news"). If the topic is a
networked topic, additional information is provided, separated by colon characters: the
network address to which postings are sent, and a flag specifying if signatures are
attached to network posts (0=no signatures, 1=attach signatures). The posting address
field may also include the formal name of a newsgroup with a semicolon separating the
address from the group name.

The line following the topic name contains three numbers:

(A) Flag: 1=read only, 0=read/write

(B) First active message number in the topic

(C) Next usable (unused) message number, this means that this number minus one is
the last message that is stored on disk.

User Data Files

The conference system keeps track of the conferences each user is joined to. It also
knows which messages a user has read. This information is stored in user’s $/adm
directory in a file named csdata.

The first line of a cs membership info file contains the conference name and, after a
comma, the number of topics in that conference. The remaining lines specify the last
message read plus 1 within each topic. If a user has resigned from that topic, that
number is preceded by a hyphen. If a user resigns from a conference, the complete
entry for that conference is removed including all the data for the topics within that
conference.

Default Membership

If present, new users are automatically joined to the conferences listed in the

2 Printed 22 Feb 03Revised 6 May 1992

ProLine File Formats CS(F)CS(F)

$/etc/default/csdata file. This file contains the name of each conference, followed by
a comma and a zero, on each line. Example:

learn,0
proline,0
apple,0

Files
$/sys/pcs/cs.herald - Initial greeting upon entering cs,
$/sys/pcs/cs.list - list of conferences with descriptions,
$/etc/rsrc/cs.rsrc - CS resource file,
$/etc/default/csdata - list of default conferences users join,
csdir/*/i.. - index, status and config file for each conference,
$/adm/*/csdata - data files for each cs member,
$/etc/help/* - help files for CS commands.

See Also
cs(C), csmod(C)

3 Printed 22 Feb 03Revised 6 May 1992

ProLine File Formats FORWARD(F)FORWARD(F)

Name
forward - Mail forwarding file

Description
Mail addressed to a local user may be automatically forwarded to any other e-mail
address by creating a file called forward in the user’s home directory
($/usr/username/forward). This file typically consists of one line which holds one
e-mail address, but multiple lines and multiple e-mail addresses (space-separated) may
also be given. Forwarding addresses can reference other local or offsite accounts.

For example, a user on this system named jsbach can create a forward file that
contains this address:

johann@pro-musette.cts.com

Any mail destined for jsbach on this site will effectively be forwarded to
johann@pro-musette.cts.com instead. Note that the local user jsbach will not receive
a copy of the letter -- it is simply passed onto the forwarding address.

To forward a letter and have a copy retained in the local mailbox, include the user’s
name, a space (or a new line), and the forwarding address. Example:

jsbach
johann@pro-musette.cts.com

Mail addressed to jsbach is copied to jsbach’s local mailbox as well as forward to
johann@pro-musette.cts.com. A number of additional forwarding addresses can be
supplied.

Note
To discontinue forwarding, remove or rename the forward file.

For loop protection, an address in the forward file cannot reference another local user
that has a forward file.

Files
$/usr/*/forward

See Also
aliases(F), mail(C), sendmail(C)

1 Printed 22 Feb 03Revised 16 September 1993

ProLine File Formats MANUALS(F)MANUALS(F)

Name
manuals - Format of manuals

Description
The ProLine Reference Manual consists of individual files, called entries, that
describe a part of the system, be it a command, a file format, miscellaneous
information, etc.

Manuals follow a specific visual format. Shown at the top of each page is an entry’s
title and section, e.g. MANUALS(F), and at the bottom is its modification date, page
number, and date printed.

Subheaders

These subheaders are standard in manual entries and typically follow in the order
presented here:

Name A short, one-line summary of the document follows.

Syntax Included for entries that describe a command with parameter arguments.

Description Begins the descriptive body of the entry. The body of an entry is
generally undefined. Though, it should not use any subheader other than
those described here. It may contain, however, its own paragraph
headings.

Note (or Notes, Bugs, Warning, Important, etc.) This subheader proceeds
important information that should stand out from the body of the
description, such as hazards or side effects.

Diagnostics Error messages and their meanings.

Files If any files are associated with an entry, they are listed after this
subheader, usually near the end of the entry. Each file listed should
include a short description.

See Also Usually, an entry ends with a ‘‘See Also’’ subheader, followed by a
reference list to related entries.

Author (Optional). The name of the author (for the entry and/or the command it
describes) is given, along with the author’s e-mail address. If this
subheader is not included, it is assumed that the author is Morgan
Davis.

Internal Structure

Manuals are punctuated with ‘‘dot’’ commands for interpretation by processing programs
such as man and manps. Each command has the form of a period (.) followed by a
two-letter command name. Arguments to a command are separated from the command by a

1 Printed 22 Feb 03Revised 27 March 1992

ProLine File Formats MANUALS(F)MANUALS(F)

space. Text that does not start with a period is considered text to be processed. Text
portions need not be formatted in the source file, as the processing programs will
perform all the necessary formatting.

Dot Commands

The ‘‘dot’’ commands are described below. In the descriptions, ‘‘s’’ denotes a set of
characters while ‘‘n’’ denotes a number. Arguments shown between [] brackets are
optional. If the optional number is omitted, zero is assumed, unless otherwise noted.

.TH s1 s2 Title Header. s1 is the entry’s title, followed by a space, and then
the associated section, s2. Both arguments must be in uppercase.
(e.g. .TH MANUALS F)

.DA s Date. s contains the date of the last modification of the entry in
this format: 12 March 1992.

.SH s Subheader. Displays s fully left justified.

.LM [n] Left Margin. The value of n is added to the current left margin. A
negative value narrows the margin, while a positive value widens it.

.RM [n] Right Margin. The value of n is added to the current right margin. A
negative value narrows the margin, while a positive value widens it.

.PP [s] New Paragraph (with optional s paragraph header).

.IP [n [s]] Indented Paragraph. Begins a new paragraph, setting the indentation to
n columns. If s is included, it is displayed at the left margin,
and the print position tabs out to the indentation point. The effect is
what you see here -- the dot commands are left-margin justified, while
the descriptions are indented. Use .IP with no arguments to disable
indentation.

.CN s Centers s, followed by line break.

.SP [n] Spaces. Print n spaces (default is 1).

.RC [n] s Repeat Character. Prints the s character n times. If n is
omitted, s is repeated up to the right margin and a line break
follows. Use this command to display characters that would be
misinterpreted if included in text (e.g. ‘‘.RC 1 _’’).

.BR [n] Break. Inserts n line breaks (default is 1). This moves the
printing position to the next line, respecting current indentation
settings.

.AF [n] Auto-Fill. If n is given, auto-fill is turned on (1) or off (0). If
no argument is given auto-fill is toggled. Proceeding text lines are
displayed with no formatting. Blank lines are ignored, but commands

2 Printed 22 Feb 03Revised 27 March 1992

ProLine File Formats MANUALS(F)MANUALS(F)

such as .BR are still recognized.

.UC [s] Underline Character. Sets the emphasis-toggle character to s
(default is the underscore ‘_’). Text selections surrounded by this
character are emphasized. For video displays, this results in either
highlighted or underscored text. For dot matrix printers, the text is
underlined. For PostScript devices, the text is italicized.

.NP New Page. Ends the current page by printing the appropriate number of
lines, followed by the page footer.

.IF n If fewer than n lines remain on the page, a new page (.NP) is
performed. Include .IF before tables or lists that should not be broken
across pages. The .SH, .PP and .IP commands include built-in widow
control, as if ‘‘.IF 2’’ precede them.

.TB n Tab to column n from current print position.

An excellent way to learn to ‘‘program’’ a new manual entry is to compare the contents
of an existing entry with its printed output, noting how each dot command effects the
display.

Typographic Conventions

Whenever reference is made to the command being described by the entry, always
highlight it using the underscore/highlight quoting character. Similarly, reference to
other commands should be highlighted as well. Highlighting is valuable for making
urgent or important passages of text stand out. Such text is displayed in italics on
PostScript printers.

Use typographer’s quotation marks. These consist of the apostrophe (’) and accent
grave (‘) characters, either singularly or in pairs. ‘‘Like this,’’ for example.

Whenever examples are used that reference items that the user might see on the screen,
turn off the auto-fill mode (.AF). Text that is not auto-filled is displayed in
Courier, a monospace font, on PostScript printers. This has a the desirable effect of
making the text stand out in a ‘‘computer-like’’ typeface.

Files
$/sys/man/* - contains manual sections and entries.

See Also
man(CT), manps(CT), whatis(C)

3 Printed 22 Feb 03Revised 27 March 1992

ProLine File Formats MAP(F)MAP(F)

Name
map - Networking map file

Description
Map files are used to catalog and identify ProLine systems in our network. Each ProLine
site must create its own map entry file and submit it for processing, or else the rest
of the network will not know the site exists.

In the event that paths databases are automatically generated as a result of processing
map files, network sites depending on automatic routing and smart mailers to handle
delivery require your map entry to be accurate. Inaccurate data will, at the least,
cause delayed or more expensive deliveries, and at the most, failed deliveries.

Building Your Map

You’ll need to create your map entry file in any text editor. All lines beginning with
‘#’ are comment lines to pathalias, however the UUCP Project has defined a set of
these comment lines to have a specific format so that a complete database can be built.

Each comment field in your map entry file uses this format:

#<field id letter><tab><field data>

Note that <tab> means the actual Control-I character (ASCII 9), or six spaces to put
you into the next tab column.

The entry should begin with the #N line, and end with a blank line after the routing
data. The final blank line is important in that it denotes the end of your routing
list. Here’s a template:

#N sitename
#S Machine type; operating system
#O Organization name
#C Contact person’s name
#E Contact person’s electronic mail address
#T Contact person’s telephone number
#P Organization’s address
#L Latitude / Longitude
#R Remarks
#U Netnews neighbors
#W Who last edited the entry; Date edited
#
sitename remote1(FREQUENCY), remote2(FREQUENCY),
 remote3(FREQUENCY)
(one blank line goes here!)

Example of a completed entry:

1 Printed 22 Feb 03Revised 30 March 1994

ProLine File Formats MAP(F)MAP(F)

#N pro-sol
#S Apple IIGS; ProLine 2.0
#O Morgan Davis Group
#C Morgan Davis
#E mdavis@pro-sol.cts.com
#T +1 619 670 0563
#P 10079 Nuerto Lane, Spring Valley, CA 91977-7132
#L 32 47 N / 116 56 W
#R 24 hour operation at +1 619 670 5379
#R 300 to 9600 bps V.32, V.42, V.42bis
#W pro-sol!mdavis (Morgan Davis); Wed Jun 15 18:00:00 PDT 1988
#U
#
pro-sol pnet01(HOURLY-5), pro-mercury(HOURLY), pro-mars(HOURLY-5),
 pro-sat(HOURLY), pro-simasd(HOURLY-5), pro-test(HOURLY),
 pro-carolina(EVENING), pro-exchange(WEEKLY/2), pro-party(WEEKLY),
 pro-angmar(WEEKLY/2), pro-charlotte(WEEKLY), pro-colony(WEEKLY),
 pro-pac(WEEKLY), rti-austin(DAILY), pro-hobbyist(DAILY),
 pnet08(DAILY*2), pro-avalon(HOURLY), pro-vide(HOURLY+5),
 pro-starbase(DAILY), pro-ascii(HOURLY), pro-la(WEEKLY)

Be sure to include that final blank line at the end of your map file, because maps are
submitted through the mail system which can attach signature files to the end of your
messages.

Map Fields

The following is a description of each field in the map entry. Each field prefix
should be present in your map, even if the field is blank.

#N Your system’s name. One of our goals is to keep duplicate host names from
appearing because there exist mailers in the world which assume no duplicates (and
attempt UUCP path optimization on that basis), and it’s just plain confusing to
have two different sites with the same name.

#S This is a quick description of your equipment (i.e., ‘‘Apple IIGS’’), followed by
the version of ProLine you’re running.

#O This should be the name of your organization (company, school, computer club,
etc.), squeezed to fit inside 80 columns as necessary.

#C The full name (or names, separated by commas) of the person responsible for
handling queries from the outside world about your machine.

#E This should be just a machine name, and a user name, like ‘‘pro-sol!mdavis’’. The
site name does not have to be the same as the #N field (i.e. the contact ‘‘lives’’
on another machine at your site).

2 Printed 22 Feb 03Revised 30 March 1994

ProLine File Formats MAP(F)MAP(F)

Multiple electronic addresses should be separated by commas, and all of them
should be specified in the manner described above.

#T Telephone number of the contact person in this format:

+1 415 642 1024

This is the international format for the representation of phone numbers. The
country code for the United States of America (and Canada) is 1. Other country
codes should be listed in your telephone book. If an extension is needed, use
this format:

+1 415 549 3854 x37

Multiple phone numbers should be separated by commas, and all of them should be
completely specified as described above to prevent confusion.

#P Postal address of the contact person. Include all information necessary for
anyone in the world to reach the address through paper mail.

#L The site’s latitude and longitude (or nearest approximation). This should be in
the following format (two fields, with optional third):

DD MM [SS] N|S / DDD MM [SS] E|W [‘‘city’’]

The first number is Latitude in degrees (DD), minutes (MM), and seconds (SS), and
a N or S to indicate North or South of the Equator.

A slash separator.

Second number is Longitude in degrees (DDD), minutes (MM), and seconds (SS), and a
E or W to indicate East or West of the Prime Meridian in Greenwich, England.

Seconds are optional, but it is worth noting that the more accurate you are, the
more accurate maps we can make of the network (including blow-ups of various high
density areas, like New Jersey, or the San Francisco Bay Area).

If you give the coordinates for your city (i.e. without fudging for where you are
relative to that), add the word ‘‘city’’ at the end of the end of the
specification, to indicate that.

If you’re not sure of your coordinates, call any land surveying company in your
area, or your local government offices.

#R Remarks. As noted before, all lines beginning with a ‘#’ character are comment
lines, so if you need more than one line to tell us something about your site, do
so before the other fields.

#U Network news neighbors. The Internet is the network that moves netnews around.
Unless you receive news directly from an Internet site, leave this blank.

3 Printed 22 Feb 03Revised 30 March 1994

ProLine File Formats MAP(F)MAP(F)

#W Who last edited the map entry and when. This field contains an e-mail address, a
name in parentheses, followed by a semi-colon, and the output of the UNIX date
program. Example:

pro-sol!mdavis (Morgan Davis); Sat Feb 23 05:03:00 PST 1988

The rules that apply in the contact’s e-mail address apply here also. (i.e. only
one system name, and user name). This field is used for automatic aging of the map
entries.

The Connectivity List

After all the ‘#’ fields comes a list of systems that your site talks to directly.
This list begins at the left margin with the name of your site, followed by the remote
systems yours talks to. Commas are used to separate each site in the list, and any
sites that are positioned on following lines must begin with one or more tabs.
Example:

pro-test pnet01(DIRECT), pro-sol(HOURLY),
 pro-lumen(DAILY/4)

Immediately following the LAST entry in this list is a completely blank line.

The items in parenthesis which immediately follow a site name are imaginary cost values
associated with that connection. Cost values are measured in both frequency of polling
and/or answering times, in addition to other factors (such as long distance charges,
modem speeds, etc.). Pathalias uses these values to calculate the lowest cost routes
from site to site.

The cost breakdown is:

DIRECT 200 Local call, many connections per hour
DEMAND 300 Toll call, many connections per hour
HOURLY 500 One connection per hour
EVENING 1800 Multiple calls during low-rate hours
POLLED 5000 One or more polls per day by remote site
DAILY 5000 One connection per day
WEEKLY 30000 One connection per week
DEAD (high) Temporarily inoperable connection

If a site goes down for good, or you decide to discontinue connections with one, remove
the site and its cost entirely from your map. A DEAD cost means that you’re still
connected and you accumulate mail for that site.

Incrementals of these costs can be used, too. For example, DAILY*2 would mean every
other day. DAILY/2 could mean twice a day or twice an evening if EVENING isn’t quite
the right description of the connection.

4 Printed 22 Feb 03Revised 30 March 1994

ProLine File Formats MAP(F)MAP(F)

Steps For Determining Costs

Due to the nature of the ProLine software, DIRECT and DEMAND are impossible costs to
use. These indicate a connection where your site would immediately poll another upon
receipt of mail for that site. ProLine polls on a schedule, not because of the
immediate presence of outgoing mail. Do not use these costs.

The best a ProLine can do is HOURLY, and that is only possible if a site makes two or
more attempts to poll another site in the course of an hour. This is because ProLine
can only poll when it is not busy doing something else (system maintenance or hosting a
user). It realistically cannot connect once an hour unless it makes multiple attempts
(every 15 to 30 minutes). If a sites a single attempt each hour to connect with another
site, the cost is probably more accurate as HOURLY*3 (meaning, every three hours).

1. Use the above values to establish a starting point for your connectivity, and base
it only on the sites that you call.

2. Next, for each site that calls you, estimate the costs based on the frequency of
calls you receive. If the estimated cost of incoming calls is lower than your
initial cost, use the lower value. If it is the same or higher, make no
changes. Do not add or subtract values based on two-way communications. If the
site that calls you is one you don’t call, use POLLED.

3. At this point, you should see that your calls are the primary cost factor, and
calls you receive might lower cost, but will never increase it.

Fudge Factors

You can include values to raise or lower a cost to show preference or avoidance.
Typical values might be a -10 preference for a high speed connection, or a +5 or +10 to
avoid a certain site for which there might be several parallel paths. Example:
pro-site(HOURLY+10).

You can also declare a high cost to a site if you don’t want net traffic for that site
going through your machine. Such an entry will not effect your local use of that
connection.

Storing Your Map Entry File

After you create your map file, place a copy of it in the $/sys/maps directory using
the name of your site as the filename in legal ProDOS format. For example,
‘‘$/sys/maps/pro.sol’’.

At the present, $/sys/maps is used only for local map entry storage. But as tools
become available for building and updating maps right on a ProLine system, this
directory will become more important.

5 Printed 22 Feb 03Revised 30 March 1994

ProLine File Formats MAP(F)MAP(F)

Submitting Your Map Updates

After creating your map entry, you must submit it to the map coordinator for archiving
and potential processing. Using the electronic mail system, send your map to:

mapcoord@pro-sol

(If you use rcp to send it, be sure to specify ASCII text format with the -a option).

Currently, map submissions are archived on pro-sol.cts.com (available via mail server
request), and various site list maintainers.

Files
$/sys/maps/* - map storage area.

See Also
aliases(F), intro(NET)

6 Printed 22 Feb 03Revised 30 March 1994

ProLine File Formats PLUSH(F)PLUSH(F)

Name
plush - Menu format and programming

Description
The $/etc/plush.m text file contains specially-formatted menu definitions that can be
modified to alter the way plush presents commands to the user. The exact formatting
of this file is critical -- a mistake will cause incorrect operation which may not be
reported. Since the file contains text commands, any text editor can be used to edit
it.

The Menu Definition File consists of individual structures, one for each menu.
Multiple menus are separated by blank lines. The definition file is terminated by the
‘‘END’’ command. The typical layout of this file would be:

Menu #1 Structure
<a blank line>
Menu #2 Structure
<a blank line>
Menu #N Structure
END

Note that there is no blank line between the last structure and ‘‘END’’.

Format of a Menu Structure

Each menu structure consists of three items: a menu title, the menu’s prompt, and the
menu’s key-command list:

Menu Title
Menu Prompt
<First key-command line>
<Second key-command line>
...
<Last key-command line>
<Key-command list terminator>

Here is an actual menu structure for a "Games Menu":

Games Menu:
Games:
3,2,0,Ll,L,L - List all games,DO ls $/games
3,2,0,Pp,P,P - Play a game,IN Which game;DO $/games/$IN
3,2,0,,,,
3,2,0,Ff,F,F - Fortune cookie,DO $/games/fortune
3,2,0,Oo,O,O - Other fun things,>> Other Fun Things
9,9,9,,,,

The first line contains the name of the menu (Games Menu).

1 Printed 22 Feb 03Revised 25 February 1994

ProLine File Formats PLUSH(F)PLUSH(F)

The second line is the menu’s prompt string (Games:). If the prompt begins with a <
(less-than) character it identifies a menu as an extension menu. Extension menus
allow the user to make one selection, and then the menu is closed. Normally, once a
menu is opened it remains open until the user manually closes it by pressing a
‘‘backup’’ key.

Beginning with the third line is the key-command list (key-command lines are discussed
in detail next). This list contains seven fields that reside completely on one line of
text, though the line can be longer than the screen’s width.

Key-Command Lines

Each key-command line contains seven fields, separated by commas. Fields are presented
in the following order (using a sample line as reference):

3,2,0,Ll,L,L - List all games,DO ls $/games

Group-ID: (3) Determines if this line is accessible based on the user’s group-ID.
Groups are: (0) root or sysop, (1) staff, (3) guest. If the group-ID field
contains a number which is less than the user’s group-ID, the command is
not available. This can allow certain commands to be inaccessible for
lower-level users.

Location: (2) This code, 0 through 2, determines if the selection is available
based on the user’s current location: (0) the local console, (1) remote
terminal, or (2) either local or remote.

Priority: (0) Priority is: (0) standard, or (1) super-user override. This allows
plush to perform certain commands that would otherwise be illegal due
to the user’s group-ID permissions. As an example, a guest or staff
level user cannot view a text file in the $/etc directory. But if
root-user priority (1) is specified, such access is permitted.

WARNING: Giving root-level access to some commands could allow a
non-root user to damage your system!

Keys: (Ll) Two letters or symbols, or blank. These characters define the
keystrokes that invoke the command for this line. Usually, upper and
lowercase versions are used. "+=" would be used so that pressing the "+"
key would not require the user to hold down SHIFT. If this field is
left blank, this item is not selectable but the description is displayed
in the command list. This can be used to create blank lines or special
separators.

Response: (L) This letter, or string of characters, is echoed back to the user
after pressing one of the two keys as long as the "hot-key" input mode
is used.

2 Printed 22 Feb 03Revised 25 February 1994

ProLine File Formats PLUSH(F)PLUSH(F)

Description: (L - List all games) Describes the command. Shown when the command
list is displayed. A blank line is displayed if the response field is
blank. However, if the response field contains characters and the
description is blank, the menu item is treated like any other, only it
is not displayed. This is useful for creating hidden menu items.

Command: (DO ls $/games) The command line. Commands start with a two-letter code
followed by arguments (if any). Multiple commands can be placed in this
line by separating them with a semicolon (;).

The key-command list is terminated by a key-command line that consists of a group-ID of
9, location of 9, priority of 9, and the remaining fields all blank. Example:

9,9,9,,,,

Command Codes

Plush interprets the following two-letter commands (uppercase required):

DO Launches an external program. Plush searches $/bin, $/sys/bin, $home/bin,
and $/sys/local/bin to find the program. If it does not reside in one of
those areas, include the complete path to the program. Use $/ to specify the
ProLine System Prefix. The DO command name is optional, ‘‘DO df’’ and ‘‘df’’
will produce the same results.

ED Edits a file. The full path to the editable text file must be given.

VU Views the text file given as the argument.

>> Opens the submenu whose name is given as the argument. It is best to place
the named menu AFTER the menu in which this command is issued. This is
because plush first searches for menus in a forward direction (from the
current menu down to the last menu). If the menu can’t be found, plush
searches from the current menu backwards to the first menu in an attempt to
locate it.

<< Closes the current menu and returns to the previous one.

EX Exits plush. This is allowed if plush is invoked from csh or some
other shell.

BY Bye. Logs the user out, disconnecting the modem.

PR Prints a message. If no argument is given a blank line is printed.

CD Changes directories to the argument given. If no directory is specified, the
current working directory becomes the user’s home directory.

3 Printed 22 Feb 03Revised 25 February 1994

ProLine File Formats PLUSH(F)PLUSH(F)

RM Removes the named file.

IN Accepts a line of input, storing it in a special variable called $IN.

QY Query-yes. Prompts the user with a Yes/No question, Yes being the default.
If the user’s response is Yes, any remaining commands in the command line are
performed. If a negative response is given, the command line is immediately
terminated.

QN Query-no. Same as QY, except the default is No.

CL Clears the screen.

TB Test blank. Checks the argument that follows to see if it evaluates to
nothing, a blank value. For example, ‘‘TB $IN’’ cancels the command line if
the last user input was blank (nothing entered).

TF Test file. Checks the file argument that follows to see if it exists. For
example, ‘‘TF $IN’’, cancels the command line if the file name in $IN is not
found.

Special Characters

It is very important that no illegal characters such as commas, colons or misplaced
quotation marks are used within any of the seven fields of the key-command line.
Commas and colons can be used as long as the entire field is enclosed in quotes. For
example:

3,2,0,Bb,B,"B - Bye: disconnect, hangup",BY

To invoke a command with a single argument that consists of spaces, enclose the
argument in single-quotes (’). Example:

0,2,0,Mm,M,M = MDSS Account,adduser -m ’bin/mdss -x BLX’

Plush supports the standard C-Shell escape (\) and control-code (^) prefix
characters. Any tilde (~) character is replaced with the path to the user’s home
directory.

Variables

Plush recognizes the following variables:

$IN Input from the most recent IN command.
$/ Path to the ProLine System Directory.
$spool Path to the spool directory.
$tmpdir Path to the temporary files directory.

4 Printed 22 Feb 03Revised 25 February 1994

ProLine File Formats PLUSH(F)PLUSH(F)

Notes

Plush supports 100 menus, and each menu can include 30 items. This limitation
exceeds the capacity of most of the system’s text editors, so working with a large
plush.m file may require utilizing an external text editor or word processor.

Since plush works with only one menu at a time, it operates faster if the menu file
is located on a fast disk (e.g. a RAM disk). To utilize the $tmpdir option, include a
copy command in the $/etc/rc file to put a copy of plush.m into $tmpdir.

See plush(C) for details on where plush looks for its menu files.

Files
$/adm/*/environs - user’s environment settings,
$tmpdir/plush.env - temporary environment file.

See Also
csh(C), plush(C), setenv(C)

5 Printed 22 Feb 03Revised 25 February 1994

ProLine

Games

Copyright 1994 Morgan Davis Group

ProLine Games AF(G)AF(G)

Name
af - Add a fortune to the fortunes file

Syntax
af [-o]

Description
Af, a shell script, adds a fortune to the end of a fortune data base. The -o flag
causes af to use the optional fortune database, one traditionally containing
offensive fortunes.

Af asks you to enter the entire fortune, and then press RETURN. If the fortune is
longer than the display width, fortune correctly wraps it at word breaks when
displayed.

Af allows control characters to be included by using the caret (^) notation. However,
Control-M (RETURN), must never be used. If a newline is desired in the middle of a
fortune, Control-N (^N) will be recognized as such by the fortune program.

If a non-root user submits a fortune with af, it is not actually appended to the
database, but rather is sent to the system administrator through the mail system for
review. The administrator may decide whether to add it manually.

Files
$/games/lib/fortunes - standard fortune database,
$/games/lib/fortunes2 - alternate fortune database.

See Also
fortune(G)

1 Printed 22 Feb 03Revised 5 May 1992

ProLine Games BANK(G)BANK(G)

Name
bank - Simulated banking system

Syntax
bank [options]

Description
In games where money is the reward, it is desirable to maintain a balance of cash
between various games and be able to utilize your earnings. The ProLine Users Bank
provides this service, and helps regulate a simulated economy inside this system.

Your bank account allows you to make cash deposits and withdrawals with your savings
account, which can earn interest. It keeps track of how much money you are carrying
with you (cash-on-hand). You can transfer funds to another user on the system. You
can take out loans and pay them back as you earn money by playing (and winning) games.
There are no service charges or maintenance fees.

Your account is created automatically (with a gift balance) the first time you invoke
it. For more details about using the bank interactively, issue its built-in <H>elp
command.

Options:

-a n Add cash. This option adds cash (value n) to the current user’s cash on
hand. The current user defaults to the person issuing this command. (See
-u or -g for setting the current user to a particular account).

-c n Change cash. This sets the cash on hand to the specified value n for the
current user.

-g game Set game user. This sets the current bank account to the one owned by the
specified game. Games like blackjack can maintain bank accounts just as
users do.

-i Interactive. Normally, when invoking bank without arguments, the user
enters an interactive mode. When options are used, the functions they
perform are completed and the user returns to the shell. This option is used
in conjunction with other options to send the user into interactive mode.
Typically, this is used after setting the current user with -u or -g to
work with their account interactively.

-s n Subtract cash. This subtracts from cash on hand the specified value n for
the current user.

-q Quiet. Some options, such as setting the current user, issue feedback. This
option disables such feedback.

-u user Set user. Sets the current account to the one owned by user.

1 Printed 22 Feb 03Revised 16 December 1993

ProLine Games BANK(G)BANK(G)

-w Net worth report. Quick and easy way to find out what you’re worth.

Of all these options, only -w can be used by non-Super Users.

Setting Up Accounts

As stated, user accounts are created automatically when users enter the bank.
Accounts for games, like blackjack, need to be created so that the game (casino) has
cash with which to work. This is usually done like so:

bank -g blackjack -c 50000

This sets the current account to the blackjack game (hence -g option as opposed to
-u), then assigns $50,000 cash to the account. Game accounts, like the users who play
the games, operate out of their pool of cash on hand.

Note
The order of options is generally significant. That is, changes invoked by options
occur in the order in which they’re presented. Thus, the following reversal of options
can have undesirable affects:

bank -s 100.25 -u melvin

This subtracts $100.25 from the current account (yours!), then sets the current user to
‘‘melvin’’. This was probably not intended. Consider this:

bank -w -u melvin -w

This reports your net worth, sets the user to ‘‘melvin’’ and then reports his net
worth.

Files
$/games/lib/bank.help - online help file,
$/adm/*/bank.account - user’s bank account file,
$/games/lib/*.acct - game bank account files.

Author
Morgan Davis (mdavis@mdg.cts.com)

2 Printed 22 Feb 03Revised 16 December 1993

ProLine Games BLACKJACK(G)BLACKJACK(G)

Name
blackjack - Blackjack card game

Syntax
blackjack

Description
In Blackjack, the object of the game is to beat the dealer by holding a hand of cards
that total more than the dealer’s without going over 21. The values of the cards are:
Ace, 1 or 11, as the holder wishes; king, queen, jack, ten, 10 each; any other card,
its number. An ace and face card or ten in the first two cards are called blackjack.

Starting:

The shoe contains two regular decks of cards and is shuffled upon approaching the
table. Before cards are dealt, the player places a bet ($5 or more but no more than
$1000). The initial cards are dealt in this order: dealer-player-dealer-player. The
first two cards are face down, and the remaining cards are always dealt face up.

Player Options:

After the initial deal, the player may choose the following:

<H>it to request an additional card.

<S>tay to stop and play the hand being held.

<D>ouble to double the wager and take only one more card. This is allowed only when
holding two cards, and is typically done when the player is confident that the
next card will beat the dealer. Spli<T> to split a hand of two identical
cards (except for aces). The player has a chance to play two separate hands
and use the best one against the dealer.

Dealer:

The dealer turns up the face-down card and continues to draw cards as long as his total
is 16 or less and must stand when his total reaches 17 or more.

Any time the bottom of the deck is reached, the dealer reshuffles without interrupting
game play.

Settlement:

The winner is whoever stands with the highest total not over 21. In the case of a tie,
no winner prevails and it is considered a stand-off. The loser pays the winner the
amount of the wager, and in the case of the player (not the dealer), a bonus may be
awarded as follows:

1 Printed 22 Feb 03Revised 16 December 1993

ProLine Games BLACKJACK(G)BLACKJACK(G)

For blackjack, 1 1/2 times the amount of the bet.

For 21 or less in five cards, double; in six cards, triple.

For 21 composed of three sevens, triple; composed of 6-7-8, double.

Scoring:

Players who leave the game with more money than when they arrived are eligible for
placement on the high score list. The listing shows the top ten players who have the
largest winnings in a single session, and shows the number of hands won, tied, and
lost.

Note: Earnings or losses are registered with the ProLine Users Bank and affect a
player’s cash-on-hand.

Super-User Installation
Use the bank to create a bank account for the blackjack casino. It cannot be played
until an account is created.

The amount assigned to the game should be fairly significant if a lot of gamblers are
expected to do well at the tables, otherwise the blackjack account may go broke. It
is fun to watch the game’s account balance to see if the house is winning over the
players.

For a real thrill, have blackjack start out by securing a loan from the bank,
instead of just assigning an arbitrary amount of cash. Then pay the bank back as the
blackjack tables turn a profit. To do this, invoke bank as follows:

bank -g blackjack -i

This sets the current account to the blackjack game, then enters interactive mode
where you can visit the loan department.

Files
$/games/lib/blackjack.help - online help file,
$/games/lib/blackjack.top10 - high score history,
$/games/lib/blackjack.acct - game bank account file.

See Also
bank(G)

Author
Morgan Davis (mdavis@mdg.cts.com)

2 Printed 22 Feb 03Revised 16 December 1993

ProLine Games CYBER(G)CYBER(G)

Name
cyber - Cyber World interactive fiction adventure

Syntax
cyber

Description
A rip in the fabric of time lands you into the future following a devastating bio-war.
Only Earth’s buildings, computers, and robots survived. Can you escape alive?

Exploration in Cyber World is like most adventure games: enter simple one or two-word
commands to move, manipulate objects, and examine things you encounter. For example,
‘‘examine coins’’, ‘‘attack robot’’, ‘‘look’’, and so on. All objects have helpful
descriptions -- it’s a good idea to look at everything for clues and avoiding hazards.

Move about using standard compass directions, abbreviated if you prefer (e.g., ‘‘n’’ is
equivalent to ‘‘go north’’). All exits are clearly marked.

If a robot is present, you can get assistance from it by calling or talking to it.
Warning: Some robots possess a sinister demeanor and may be dangerous to your
existence!

Use ‘‘save’’ to preserve your current session in case you have to quit early, or want
to have a backup position. Use ‘‘restore’’ to resume a saved session where you left
off.

Use ‘‘help’’ for a list of commands and abbreviations.

History
Cyber World is a major revision of Daniel Tobias’ ‘‘Planet of the Robots’’ written in
40-column, uppercase Applesoft BASIC in November, 1981. The game originally occupied a
25K BASIC program file, which didn’t leave any room for expansion. Descriptions were,
needless to say, not verbose. The full enjoyment of the plot could not be realized.

In 1993, the game was obtained by Morgan Davis who converted it to MD-BASIC,
reformatting all the internal messages for standard 80 column displays, and moved the
vocabulary, room and item descriptions out of the game and into an external data file.
This allowed descriptions to be rewritten and expanded, plus made it possible to add
large visual descriptions to items, such as the Deep Thought computer screen, a map for
the mall, and so on. New puzzles and nuances to the plot were added to make the game
richer with more interactive fiction. The resulting program slimmed down to just 10K
but it gained 40K of external data.

The only significant change to the original game was the removal of a built-in low-res
graphic arcade game in which the player engaged from within the mall’s arcade. This
omission allowed the game to be played over a standard text terminal (e.g., BBS). As a
consolation, the arcade game turned into something more like a slot machine that can
pay back double the cost of playing it (if you’re lucky).

1 Printed 22 Feb 03Revised 7 October 1993

ProLine Games CYBER(G)CYBER(G)

Files
$/games/lib/cyber.data - data file,
$/adm/*/cyber.save - saved session file.

Author
Morgan Davis (mdavis@mdg.cts.com), Daniel Tobias

2 Printed 22 Feb 03Revised 7 October 1993

ProLine Games FORTUNE(G)FORTUNE(G)

Name
fortune - Print a random, hopefully interesting, adage

Syntax
fortune [-o]

Description
Fortune with no arguments prints out a random adage, not unlike that found in a
fortune cookie. The -o flag causes fortune to randomly select a fortune from either
the main or alternate list of adages, often used for potentially offensive ones.

Files
$/games/lib/fortunes - standard fortune database,
$/games/lib/fortunes2 - alternate fortune database.

See Also
af(G)

1 Printed 22 Feb 03Revised 5 May 1992

ProLine Games TODAY(G)TODAY(G)

Name
today - Events on this day throughout history

Syntax
today [-s]

Description
Today prints famous birthdays and historical events for the current date in history.
Using the optional -s flag (suspend redundancy) causes today to print the
historical data for you only once per day.

Adding New Dates

You can add your own dates to the database by editing the files in $/games/lib/today.
Here’s an example for September, found in the file $/games/lib/today/sep:

B09011875 Edgar Rice Burroughs, novelist, Ah-ee-ah-ee-ah!
B09021838 Queen Liliuokalani (last queen of Hawaii).
B09021952 Jimmy Connors, tennis brat
S09011939 Germany invades Poland, starts World War II.
S09011952 Sutro Baths purchased by George Whitney.
S0901 2Labor Day, a legal holiday
S09021620 The Mayflower sets sail from Plymouth with
S09021620C102 Pilgrims.

Explanation

Column 1 The record type which can be a B for birthdays or S for special
dates in history.

Cols 2-5 Month and day as MMDD with leading zeros.

Cols 6-9 The full year of the event as four digits. If left blank, the
current year is used.

Column 10 A special processing flag. Values may be:

BLANK for no special processing.

C to continue a message from the previous line. Note that you MUST
repeat the date fields.

DAY-OF-WEEK digit where 1=Sunday ... 7=Saturday. This will cause
the message to display only if the date falls on a certain day of
the week.

Cols 11-70 The message to display for this date.

1 Printed 22 Feb 03Revised 16 May 1992

ProLine Games TODAY(G)TODAY(G)

Files
$/games/lib/today/* - databases for each month of the year.

Authors
The ProLine version was written by Jeff Jungblut (jeff@pro-avalon.cts.com). The
original database is from a similar public domain program for the IBM PC called
TODAY/PC.

2 Printed 22 Feb 03Revised 16 May 1992

ProLine

Miscellaneous

Copyright 1994 Morgan Davis Group

ProLine Miscellaneous SCRIPTS(M)SCRIPTS(M)

Name
scripts - All about shell scripts

Description
This entry is an addendum to the C-Shell (csh) entry. Refer to csh first for
introductory details on shell script files.

Shell scripts are text files that contain commands to be executed as a batch operation
by the shell. Anything that can be performed at the shell prompt can be executed from
a shell script. Here’s a sample:

First, set up some command aliases
alias ls ls -F
alias c "clear; ctime"
alias send sx -yl
alias recv rx -yl

Now print out a random, hopefully humorous adage
fortune

mail -n # read new mail (if any)

Lastly, set up some variables
set bob=$/usr/bob
set prompt="\$time[4]> "

A file such as this can be created using a text editor and saved in your user
directory. You can execute it from the shell just by typing ‘‘source file’’, where
‘‘file’’ is the name of the script you just created.

You can avoid having to enter the shell’s ‘‘source’’ command to run a shell script by
changing the filetype attribute of the script to ‘‘cmd’’. To change a text file to an
executable ‘‘cmd’’ (command) file, use the setfile command. If you’ve just created a
script and named it ‘‘wonka’’, for example, the command:

setfile -t cmd wonka

makes it executable. To run it, you simply enter its name. Note that the editor can
edit ‘‘cmd’’ files as if they were ordinary text files, so using setfile is only
necessary once after the file is first created (editing the file does not change its
type). If you plan on creating many shell scripts, they’re typically stored in a
directory called ‘‘bin’’ in your $home directory (e.g. $home/bin/wonka).

There is a special ‘‘cmd’’ file named ‘‘login’’ in your directory which is
automatically executed after logging in. You can use an editor to tailor it to your
heart’s desire, making your session on ProLine a unique experience.

Special Script Commands

Your scripts have the ability to use some special commands that allow for greater

1 Printed 22 Feb 03Revised 5 May 1992

ProLine Miscellaneous SCRIPTS(M)SCRIPTS(M)

flexibility in the way they execute:

exit halt a running script and return control back to the shell for regular
keyboard-based command input. The exit command accepts a numeric argument
as a result code to pass back to the shell or calling process. Any non-zero
result is considered an error. If no argument is given, zero is assumed (no
error).

if test for a certain condition, such as the existence of a file. If the
condition is true, script execution continues with the commands which follow
until an else or endif command is encountered. If the condition is false,
the first else or endif command on a new line is searched for, and
execution will continue with the commands that follow it. (See if for
complete details on if, else, and endif)

read var read a line of input from the user and assign it to a shell variable.

You can place comments into your scripts by putting a pound-sign (#) before each
comment. The shell ignores anything that follows.

Scripts can also make use of any arguments that are entered at the command line when
the script was launched. This is done by making reference to the argc and argv shell
variables which hold the argument count and argument list respectively.

Consider following script called ‘‘view’’:

if $argc < 2 then
 echo -n "Name of file to view? "
 read file
else
 set file=$argv[1]
endif

if ! -f $file then
 echo Can’t seem to find $file!
 exit -1
endif
echo ------------------
cat $file
echo ------------------

View begins by checking the argument count in argc. Since the command itself is part
of the argument list, the argument count is always one plus the number of arguments
following the command.

If $argc is less than two, meaning it must be one because only the name of the script
was entered, then it prompts the user to enter a file name. Otherwise, if $argc is two
or more, it assigns the file variable to the first argument, $argv[1].

2 Printed 22 Feb 03Revised 5 May 1992

ProLine Miscellaneous SCRIPTS(M)SCRIPTS(M)

Next, the view script tests for the existence of the file. The ‘‘!’’ operator is a
logical NOT, which reverses the logic. Thus, the statement reads, ‘‘if the file does
not exist’’. Should the file be non-existent, an error message is printed, and the
script exits with -1, which sets the shell’s status variable to -1.

If the file does exist, it is displayed, bordered by lines of dashes.

Ignoring Errors

Normally, if an error occurs (due to a command or process that returns a non-zero
result), a running script is halted. To avoid this, unset the exit shell variable. To
restore normal error handling, set exit (no assignment value is necessary -- it just
has to exist).

Note
A script can call another script as a command, but when the second script stops, the
first one WILL NOT resume execution. To have execution of the calling script resume,
launch the second script through a new shell. Example:

This is the first script
$shell source script2 # invoke 2nd script via a new shell
echo It worked # when the 2nd is done, it returns here
end of first script

The ‘‘shell’’ variable contains the pathname to the current shell program.

See Also
csh(C), if(C), setfile(C), source(C)

3 Printed 22 Feb 03Revised 5 May 1992

ProLine

Networking

Copyright 1994 Morgan Davis Group

ProLine Networking ARBITRON(NET)ARBITRON(NET)

Name
arbitron, arbitron2 - Report weekly volume statistics on newsgroups

Syntax
arbitron [-a] [-v]
arbitron2 [-a] [-v] infile outfile

Description
Arbitron and arbitron2 together compile statistics on the number of messages posted
weekly to all newsgroups listed in the file $/etc/newsys.

Arbitron is a shell script which lumps all of the data from the $/sys/logs/*/newslog
files (where * represents a day of the week) into one large file. Arbitron then
calls the program arbitron2, which compiles the data and mails a summary to the root
user.

Results are sent by email to the root account. They are designed to be launched by the
maint or maint2 script once per week. As an example, the line

if $time[0] = "Sun" then csh arbitron

could be placed near the end of maint2.

Normally, newsgroups are listed in the order in which they appear in $/etc/newsys. If
the -a flag is used, they will be listed in alphabetical order. If the -v flag is
used, they will be listed in order of volume (# of posts), with the most active groups
listed last.

Note
Arbitron assumes that newslogs are rotated on a weekly basis (as is done with the
standard maint2 script). If a different method is used, the arbitron script must
be modified.

Files
$/sys/logs/*/newslog - Newslogs for the past seven days

See Also
maint(C)

Author
Douglas Granzow (dig@pro-cynosure.clark.net)

1 Printed 22 Feb 03Revised 1 November 1993

ProLine Networking BATCH(NET)BATCH(NET)

Name
batch - Process mailboxes into newsgroups

Syntax
batch [-x]

Description
Batch is used by a site that serves as the central distribution point for a
ProLine-based newsgroup. Batch takes messages that accumulate in mailbox files and
converts them into newsgroup bundles stored in $spool/news. The bundles are further
processed by rnews and postnews for distribution and local posting. To avoid
additional processing, use the -x flag which causes batch to simply exit when it is
done.

Batch finds newsgroup mailboxes by scanning through the $/etc/newsys file and
matching them to mailboxes that exist in $/sys/mail. The mailbox names are defined in
your sendmail aliases file ($/etc/aliases). Example:

pro-news-groups: ~pro.news.groups
pro-comp-mac-networking: ~p.c.m.networkin

This sample from $/etc/aliases gives posting aliases for the groups pro.news.groups and
pro.comp.mac.networking. Next to each alias is the name of the mailbox file. Mailboxes
are designated as such by the use of the tilde character (see aliases(NET) for
details). Mailbox names must agree with the naming conventions of the operating
system. So they must start with a letter and be no more than 15 characters in length.

In addition, mailbox names must match the newsgroup aliases defined in the $/etc/newsys
file. Newsys entries for the above aliases would be:

pro.comp.mac.networking=p.c.m.networkin
#D Macintosh networking discussion group
#L mac/networking
pro-sat!rnews, pro-finders!rnews

pro.news.groups
#D Discussion about ProLine newsgroups
#L pronews/groups

Notice the alias assigned to pro.comp.mac.networking -- p.c.m.networkin -- it matches
the mailbox name given in $/etc/aliases. These must be identical for batch to find
news mailboxes to process. If the formal newsgroup name is legal (15 characters or
less and agrees with the operating system), like pro.news.groups, no newsys aliasing is
necessary. See rnews(NET) for more details.

Batch should be called regularly via a crontab entry in order to process any mail
that comes in. Unless the -x flag is used, batch invokes unbatch or rnews as
appropriate to complete all processing and distribution of news.

1 Printed 22 Feb 03Revised 3 September 1993

ProLine Networking BATCH(NET)BATCH(NET)

Steps for Originating a Newsgroup

Understand that batch is used only to originate a ProLine newsgroup. You don’t need
to use batch if you only receive newsgroups from other sites (that’s what unbatch
is for).

1. Before starting a new group for distribution throughout the ProLine network
(including USENET), you must first post a formal proposal for the group in
pro.news.groups. Do not continue with these steps until your proposal is accepted
and you’re authorized to proceed.

2. Create an alias in your $/etc/aliases file so users can send mail to the group.
Posting address are identical to the formal newsgroup name, except dashes replace
the periods. Thus, to post a message to pro.news.groups, you send e-mail to
pro-news-groups@pro-sol.cts.com.

3. The mail alias points to a mailbox file (as described above).

4. Add an entry for the newsgroup in your $/etc/newsys file.

5. Add the batch command to your $/etc/crontab file.

Files
$/etc/newsys - newsgroup description file,
$/etc/newslog - news processing log,
$spool/news/ - spool area for newsgroup bundles,
$/sys/mail/* - mailbox files.

See Also
aliases(NET), unbatch(NET), rnews(NET), postnews(NET)

Author
Morgan Davis (mdavis@mdg.cts.com)

2 Printed 22 Feb 03Revised 3 September 1993

ProLine Networking CHANGESYS(NET)CHANGESYS(NET)

Name
changesys - Automated newsgroup subscription service

Description
changesys is a news subscription manager that allows you to easily add and remove
newsgroups sent to your system from your news source. Interaction with changesys is
done completely through electronic mail.

Requests are sent to the host’s changesys mailbox (e.g. changesys@crash.cts.com).
Sites are assigned special passwords to verify requests to changesys. (NOTE: Only
ProLine systems with mdss accounts on a news host are eligible to use the changesys
service. Downstream ProLine sites should request newsgroups from their upstream ProLine
neighbors.)

The message’s subject field contains the name of the function to be executed (these
functions are listed later). The body of the message contains lines identifying your
system by name and password. The body can also include additional information if
needed by the function specified in the subject field.

Here is the format of a changesys message:

To: changesys@my_news_host
Subject: function_name

system: my_site
passwd: my_password
(additional information follows)

Any additional information required by the command begins after the ‘‘passwd:’’ line.

The changesys functions are used to modify the news host’s sys file: a file, like
ProLine’s newsys, that includes information about how newsgroups are distributed to
neighboring connections. Unlike newsys, a UNIX hosts’s sys file includes entries
based on sites rather than newsgroups. Each entry in the sys file is specific to a
particular site and lists all the newsgroups or newsgroup hierarchies that the site
receives.

Services Provided

changesys recognizes the following functions:

help Sends a list of changesys functions to you via mail.

getsys Returns your current sys file entry via mail. This gives you the
current listing of groups your site subscribes to.

getall Returns your current sys file entry plus a list of the all newsgroups
you receive based on your site’s entry.

1 Printed 22 Feb 03Revised 10 June 1993

ProLine Networking CHANGESYS(NET)CHANGESYS(NET)

getgroups Requests the current list of available newsgroups, sent to you via
mail. This can be quite lengthy.

addgroups Adds groups to your site’s sys file entry, instructing the host to
begin sending those groups to you. This command requires additional
information in the body of the message (see below).

delgroups Deletes groups from your site’s sys file entry, instructing the host
to cease distribution of those groups into your system. This command
requires additional information in the body of the message (see below).

suspendsys Effectively deletes your sys file entry, saving it for later
retrieval with the ‘‘restoresys’’ command. Use this when you wish the
host to temporarily cease all distribution of news to your system.
While your sys entry is suspended, no news is stored for your site.

restoresys Restores your previously suspended sys file entry.

delsys Deletes your sys file entry completely, thus permanently halting news
distribution to your site.

Subscription Lists

Some changesys functions require lists of newsgroup names. The subscription list
format used on UNIX news systems follows the general syntax:

newsgroup-pattern,newsgroup-pattern,...,newsgroup-pattern

It is a comma-separated list, containing no spaces. A newsgroup pattern is a newsgroup
name, or an initial portion of a newsgroup name specifying all newsgroups beginning
with that pattern. A pattern may have ‘!’ as the first character, which causes
newsgroups matching that pattern to be excluded.

Examples:

soc,rec,news.software.b # all newsgroups in the "soc" and
 # "rec" hierarchies, and the group
 # "news.software.b"

rec.pets,!rec.pets.cats,fl # all newsgroups in the "rec.pets"
 # hierarchy except "rec.pets.cats".
 # All groups in the "fl" hierarchy.

Adding and Deleting Groups

The ‘‘addgroups’’ and ‘‘delgroups’’ functions require additional information in the
body of the message immediately following the ‘‘passwd:’’ line. The line begins with
the function name, a colon, and a newsgroup subscription list as defined above.

2 Printed 22 Feb 03Revised 10 June 1993

ProLine Networking CHANGESYS(NET)CHANGESYS(NET)

Here’s an example using ‘‘addgroups’’:

To: changesys@my_news_host
Subject: addgroups

system: my_site
passwd: my_password
addgroups: ca.test,comp.sys.unix,sdnet

This adds two groups and one whole distribution (‘‘sdnet’’). To receive an entire
branch of the news tree you need only to give the group’s base name (e.g. ‘‘sdnet’’).
In the above example, everything in and under ‘‘sdnet’’ would be sent to your system.
If you wanted to receive all of ‘‘sdnet’’, but not ‘‘sdnet.test’’, the ‘‘addgroups’’
line would be:

addgroups: ca.test,comp.sys.unix,sdnet,!sdnet.test

To cease reception of sdnet and its subgroups, your message would use the subject
‘‘delgroups’’, and the line following your password would be:

delgroups: sdnet,!sdnet.test

It is important to understand that changesys simply adds and deletes the items you
specify -- it’s like text editing via remote control. It isn’t smart enough to know
that if you removed only ‘‘sdnet’’ that you meant ‘‘sdnet.test’’, too. You have to
include all group items you wish to remove.

You can add and delete groups in the same message by including both an ‘‘addgroups:’’
and a ‘‘delgroups:’’ line (the subject of the message can be either ‘‘addgroups’’ or
‘‘delgroups’’). Example:

To: changesys@my_news_host
Subject: delgroups

system: my_site
passwd: my_password
delgroups: alt.barney.dinosaur.die.die.die,\
alt.fan.alfred-e-neuman
addgroups: alt.bbs,!alt.bbs.internet,\
rec.arts.comics

Long group lists can be continued on multiple lines by ending them with a backslash
character, as shown above.

Important

Use caution when changing your sys file entry. An erroneous entry may result in a
dramatic increase in the news your site receives. Or it may result in your receiving
no news at all. Using a ‘‘getall’’ command after adding or deleting groups is always a
good idea.

3 Printed 22 Feb 03Revised 10 June 1993

ProLine Networking CHANGESYS(NET)CHANGESYS(NET)

The function names, including the ‘‘system:’’ and ‘‘passwd:’’ lines, must be spelled
correctly. At least one space is needed between the colon and the parameter.

Note

The version of changesys described here is currently unique to CTSNET. Other versions
do not have ‘‘addgroups’’, ‘‘delgroups’’ or any error checking for existence of groups.

Author
Original author (version 2.5), Christian Seyb; additions for CTSNET (version 3.0+),
Bill Blue, CTS Network Services.

4 Printed 22 Feb 03Revised 10 June 1993

ProLine Networking DOMAINS(NET)DOMAINS(NET)

Name
domains - All about Internet domains

Description
In the Unix world there are things known as domains. Domains are basically specific
machines that are knowledgable (mail-wise) of other machines in that domain. For
example, the authority for the .com domain is the site called ucbvax. The domain that
governs most of the ProLine network is called .cts, and is a second level domain or
‘‘park’’ (cts stands for Crash Time Sharing).

My site, crash, is the official registered authority for the .cts domain. So then,
.cts.com really is crash, the authority that presides over that domain. Sites on any
network that use what is known as Internet addressing, will know about the various
registered domains -- at the very least .com, (ucbvax) and .cts.com (crash) as well.

The idea is that any site that is connected to a domain can be addressed via that
domain. And any Internet site that knows about domains can basically get the mail
through by looking at domain authorities. Domains are akin to ZIP codes we add to our
postal addresses. With them, the Post Office can usually get mail to us even if the
address is missing a city and state, and sometimes even your house number and street!
Domain usage is similar, though an address has to, at the least, contain a user name,
and the user’s home system name.

Mailing to bblue@crash.cts.com means ‘‘send mail to bblue at site crash in domain .cts
in domain .com.’’ If a given Internet site does not recognize .cts.com, it will
recognize .com and send the message along. The .com authority will know about .cts.com
and pass it along. The crash!) and deliver the mail to bblue.

This also means that any site that crash knows about can be referenced simply in an
Internet address. So bblue@pnet01.cts.com or bblue@pro-sol.cts.com are legitimate
because crash knows about pnet01 and pro-sol, and crash is the authority of the
.cts.com domain. Get it?

A domain-owning site, like crash, knows about all the sites under its influence because
of the mapping system we use. For more details on maps and mapping, see the map(NET)
manual.

See Also
map(NET), tutorial(NET)

Author
Bill Blue (bblue@crash.cts.com)

1 Printed 22 Feb 03Revised 29 March 1992

ProLine Networking INTRO(NET)INTRO(NET)

Name
intro - Introduction to networking

Description
This document describes the procedures for linking your ProLine system with ProLine and
Unix sites. It does not describe how networking operates. It simply presents the steps
required to configure your system to exchange network traffic.

0. Get Experienced and Organized

Learn to use the local mail and conferencing systems. Be sure you understand all facets
of manipulating mail on your own system before you send mail to someone else’s. Study
all the manuals that discuss the networking commands and tools. You should at least
know what there is to learn and where it can be found for reference later on.

Second, determine which site you should link up with first. Invariably, new sites all
want to connect with pro-sol, the ProLine system run by the Morgan Davis Group. This
is no longer a good idea. Pro-sol is currently connected to more systems than is good
for it. With all these connections on a single-line system, it is nearly impossible to
get past the busy signals. You would do well to seek connections with another site.

Third, once you choose a site, contact its administrator for permission. If all is
well, exchange information with the administrator to establish a connection. Find out
what the system’s fastest baud rate is, when and how often it would be best to call,
exchange identification codes (discussed later on), and make sure your spelling
matches.

1. Create the MDSS Account

If you’ve already created the mdss account, skip to the next section.

To allow a remote ProLine system to call yours in order to exchange mail, you must
create a special entry in your password file. This process has been automated by
accessing a hidden menu from plush, the ProLine Users Shell and is documented in the
Installation part of the ProLine manual. From the Main Menu in plush, type asterisk
(*) to open the hidden Setup Menu. Press M to create the mdss account. When a ProLine
site calls your system, it uses this ‘‘mdss’’ account.

2. Run the Mksite Script

The mksite script performs most of the steps required in getting connectivity set up.
 These include:

o Creating an mdss directory

o Adding an idfile entry (see mdss for details).

1 Printed 22 Feb 03Revised 30 March 1994

ProLine Networking INTRO(NET)INTRO(NET)

o Bringing up the L.sys file for you to edit (see poll for details).

Run the mksite script from the Networking Maintenance menu in plush.

3. Set Up the Scanner

When the previous items are completed, add an entry into your $/etc/crontab file using
any text editor. The entry can contain the scan command as shown in this sample
crontab file:

Day ## Mon HH MM Command
* * * * 15 scan
* * * 03 20 csh maint -r

In this example, the scan command executes 15 minutes after the hour, every hour,
though you can program it for any frequency you require. Scan searches the $/mdss
site subdirectories for any mail to deliver. When done, it calls upon poll to make
the connections, which in turn calls upon mdss to transfer the mail.

You could also enter a single poll command in your crontab file. This causes the
site to be polled at the specified time whether or not there is anything to send. The
command format would be ‘‘poll pro-site’’.

A better, though initially more complicated approach is to invoke a script containing
scan, poll, or any other mail processing commands from your crontab file. Putting
these commands into a script ensures that every step is processed. If they were
individual cron entries, a task may be skipped if the system is busy with other work.
Here’s an example of invoking a ‘‘mailtask’’ script:

Day ## Month HH MM Command
* * * * 15 csh mailtask

4. Submit Your Map

After establishing a link with any site, you must submit an updated map entry file.
See the map(NET) manual for details on creating, updating, and submitting your map.

5. Care and Feeding

You now know the step-by-step procedures for getting networked. Note, however, that
there is more to it all than the steps listed above. ProLine sports a battery of
utilities for maintaining and tracking network mail activity. You’ll want to
familiarize yourself with these tools.

Setting up a link with additional sites is easy. You need only to run mksite the
next time you wish to network with a new site.

2 Printed 22 Feb 03Revised 30 March 1994

ProLine Networking INTRO(NET)INTRO(NET)

Keep an eye on your log files. They can grow like a cancer and eat up all your disk
space. It is a good idea to implement a ‘‘log file rotation’’ scheme as part of your
automated daily maintenance activities.

Summary Checklist

0. Get Experienced and Organized
1. Create the MDSS Account
2. Add the site
3. Set Up the Scanner
4. Submit Your Map
5. Care and Feeding

Files
$/etc/L.sys - systems file for dialing and logging in,
$/etc/idfile - site identification file,
$/mdss/* - connecting site subdirectories,
$/sys/maps/* - storage of map entry files.

See Also
mksite(NET), rmsite(NET), maint(ADM), map(NET), mdss(NET), poll(NET), scan(NET)

3 Printed 22 Feb 03Revised 30 March 1994

ProLine Networking MDSS(NET)MDSS(NET)

Name
mdss - Mail Delivery SubSystem

Syntax
mdss [options] [site]

Description
Mdss interacts with a remote mail system to transfer mail files. It uses a binary
protocol with error checking to exchange batches of files in both directions. Mdss
is simply an agent for exchanging mail using a number of file transfer protocols.

When a remote site is called, mdss is invoked by poll passing along the polled
site’s name.

When a remote site originates the connection by logging in, mdss is invoked (from the
interpreter field in the password file) without a site argument. The calling system
must then identify itself. Its response must match an entry in the mdss idfile
($/etc/idfile). Idfile entries consist of a site name and password code, separated by a
semi-colon (e.g., ‘‘pro-site;password’’).

Comments can be placed in the idfile following a pound-sign (#).

Mdss recognizes these options:

-d n Delay for n seconds after receiving the command prompt from the slave.
This is for MDSS implementations that cannot handle immediate responses from
the master after it receives the ‘‘enquire’’ prompt and sends a response.
Typically, such implementations would be those written for slower systems,
MDSS interfaces built from shell scripts, etc.

-p or -u Invokes standard XMODEM protocol with text filtering for use with P-Net hosts
or older implementations that do not exchange total byte and job count
information at the beginning of transfers.

-s When everything is done, and only if files were received, invoke
sendmail(C) before exiting.

-x flags Transfer options. Specifies flag characters to be used by the file
transfer protocol module invoked by mdss. One or more of the following
characters can be given as the flags argument for XMODEM mode (default)
transfers:

C 128 byte blocks with CRC

D Doubles interpacket timeout delay tolerances.

K 1K blocks with CRC

L 4K blocks with CRC

1 Printed 22 Feb 03Revised 16 January 1994

ProLine Networking MDSS(NET)MDSS(NET)

X Standard XMODEM, defeating ProDOS information packet handshaking. The
ProDOS extension involves sending special packets of file information
required by ProDOS systems that don’t employ the Binary II file wrapping
scheme.

B Apple Binary II wrapping and unwrapping. The X flag should be included
whenever Binary II mode is enabled to avoid sending two types of information
packets.

T Text filtering. Enables newline conversion and text filtering.

-y Invokes YMODEM batch mode of XMODEM (you may still need to use the -x option
to specify additional modes, such as Binary II, etc.). There is no advantage
to using YMODEM instead of XMODEM, but the ability is included as a matter of
completeness.

-z Invokes ZMODEM batch mode.

Typical Options

Typical invocations for ProLine systems use the following options:

<none> Omitting the -x, -y, and -z flags assumes standard 128-byte checksum XMODEM
protocol with the ProDOS information packet handshaking (for backward
compatibility with the original MDSS standard).

-x BLX Enables Binary II, Large packets, and standard XMODEM modes. This is the
preferred mode for use between two Apple II-based ProLine systems.

-z Enables ZMODEM mode.

-x TLX Enables text file filtering and 4K XMODEM modes, most useful when connecting
with Unix systems that employ the UMDSS gateway software from the Morgan
Davis Group.

An MDSS Session

After logging in successfully, the calling system assumes the roll of master, and
commands the answering system to receive mail, if any exists. When there is no mail
left to send, the master commands the answering site to send mail. At this point the
master and slave reverse rolls.

During mail exchange, both sites scan the files received (or sent) to gather
information for making log file entry. Two sample log file entries might include:

3/4-07:05:42 R 8968 pro-sat!wen
3/4-07:06:13 S 1421 pnet01!bblue

2 Printed 22 Feb 03Revised 16 January 1994

ProLine Networking MDSS(NET)MDSS(NET)

The entry begins with the date and time (dd/mm-hh:mm:ss). The letter S indicates mail
sent, while R indicates mail received. Following, is the number of bytes delivered,
and the addressee’s name. Mail received is placed into a spool directory for local
delivery by sendmail(C).

A work summary is displayed during the session showing jobs counts, byte counts, the
effective characters-per-second rating, and an efficiency percentage. The efficiency
rating is determined by comparing the number of characters sent per second against the
connection speed. For example, 960 cps on a 9600 baud connection is 100% efficient. On
modems with data compression, it is not uncommon to see better than 100% efficiency.

Once all mail has been exchanged, the master gives the hangup command, and both sides
disconnect. If any mail was received, and the -s option is included in the
invocation, mdss runs sendmail before exiting.

Note
Active systems should keep an eye on the fast-growing mdss log file. It should be
pruned occasionally, or archived offline, in order to save disk space.

Files
$/etc/idfile - mdss password file,
$spool/logs/mdsslog - mdss log file,
$/mdss/* - remote site directories,
$spool/mail - received mail spool area.

See Also
intro(NET), poll(NET), scan(NET), sendmail(C)

3 Printed 22 Feb 03Revised 16 January 1994

ProLine Networking MDSSCLEAN(NET)MDSSCLEAN(NET)

Name
mdssclean - Clean network site directories

Syntax
mdssclean [options] [site...]

Description
Mdssclean cleans the $/mdss directories by deleting old rnews batches and returning
old mail. It also removes any ‘‘Finder.Data’’ files found, and compacts empty site
directories to reclaim disk space.

When invoked without any site arguments, mdssclean automatically cleans all
directories found in $/mdss. Otherwise, mdssclean only processes the directories
specified by site arguments.

Mdssclean obtains user-defined default settings from its resource file (described
later), but these can be overridden by supplying command line options.

Options are:

-d Enables deleting. Without this option, mdssclean goes through the motions,
reporting file ages, etc., but does not bounce and delete messages, nor
compact directories.

-r Operate only on rnews batches (skips mail).

-a age Sets the age limit on files in days. Files the same age or older than this
setting are eligible for cleaning. (Default is 10 days)

-i Include invisible directories when mdssclean is invoked without any site
arguments.

-l lines Sets the number of body lines to return in bounced messages. Does not
apply to messages sent with rcp; such files only have the header and rcp
information stub returned. A value of -1 returns the entire message. A
value of 0 returns only the header. (Default is -1).

Resource File

The mdssclean resource file includes three items. The first item is the number of
days to assume as the age for deleting files. The second item is the maximum number
of body lines to return. The third item is a list, beginning with a count, of names to
ignore when bouncing a message. For example, if old mail is from ‘‘uucp’’, it should
not be bounced back to ‘‘uucp’’ since it isn’t a real person.

Sample resource file:

10
-1
3

1 Printed 22 Feb 03Revised 10 September 1993

ProLine Networking MDSSCLEAN(NET)MDSSCLEAN(NET)

mdss
uucp
postmaster

Mdssclean’s internal defaults are the same as the above example.

See Also
maint(ADM), mdss(NET)

Files
$/mdss/* - site directories,
$/etc/rsrc/mdssclean.rsrc - resource file.

Author
Morgan Davis. Original author Daniel Davidson.

2 Printed 22 Feb 03Revised 10 September 1993

ProLine Networking MKNULL(NET)MKNULL(NET)

Name
mknull - Make remote letters addressed to null

Syntax
mknull [-a] [-f] [site...]

Description
Mknull allows the system administrator to make ‘‘null’’ files in the mdss directories
of directly connected sites. The presence or absence of a file allows scan to
determine whether to poll a connecting site.

If the -a option is provided, null files are created for all sites directly serviced by
the system. If the -f option is provided, null files are created only for sites which
already have traffic pending.

The Null File

A ‘‘null’’ file contains a simple mail header, addressed to ‘‘null’’ at the remote
site. Null files are sent from the system administrator to the null alias at
connecting sites. They are handled by the sendmail program at connecting sites just
like letters.

Here is a sample null file produced by mknull at a site (pro-example) that has a
direct connection with pro-sol:

From pro-example!root Sat Jun 22 11:23:37 1991
Date: Sat, 22 Jun 91 11:23:37 EDT
Ppath: pro-sol!null
From: root@pro-example.cts.com (System Administrator)
To: null@pro-sol
Subject: null
X-Mailer: Mknull (1.1 8dec91)

This null file is named $/mdss/pro.sol/a0. If it were directed to pro-carolina, it
would be named $/mdss/pro.carolina/a0, and the lines of the null file which contain
‘‘pro-sol’’ would instead contain ‘‘pro-carolina’’.

Scanning for Null Files

Null files can be used by scan to determine whether or not to poll another site.
Scan causes poll to call all sites that have null files in their $/mdss directories
if it is called in the following manner:

scan -il -f a0

Assuming the null file, shown above, exists, and the system polls pro-sol, the null
file would be sent to pro-sol!null, and it would no longer exist in the $/mdss/pro.sol/
directory. Thus, the next time scan runs, pro-sol would not be polled. In fact,
pro-sol would not be polled again until another file is created. Thus, null files can

1 Printed 22 Feb 03Revised 20 Jun 1992

ProLine Networking MKNULL(NET)MKNULL(NET)

be used as one method to LIMIT how often to poll another site.

Resource File

If no site arguments are given, mknull reads the resource file
$/etc/rsrc/mknull.rsrc. Each line of this resource file contains the name of a
connecting site for which a null file should be made. Example:

pro-carolina
pro-sol

This tells mknull to make the files $/mdss/pro.carolina/a0, and $/mdss/pro.sol/a0.

Note

If files already exist for a given site, mknull renames an existing queued file to
‘‘a0’’ instead of producing a null file. If only rnews batch files are queued,
mknull produces a separate null file.

Notify the system administrator of each connecting site that you intend to send null
files to their site. They must have an alias which directs all null files to a mail
file that is regularly deleted, preferably by a maintenance script.

Files
$/mdss/*/a0 - null files produced by mknull,
$/etc/rsrc/mknull.rsrc - resource file.

See Also
aliases(NET), scan(NET), sendmail(C), rmnull(NET)

Author
Dean Fick (dean@pro-electric)

2 Printed 22 Feb 03Revised 20 Jun 1992

ProLine Networking MKSIG(NET)MKSIG(NET)

Name
mksig - Make signatures

Syntax
mksig [options] [user]

Description
Mksig generates user signature files based on the signature template file
$/etc/default/signature. To generate or update your own signature file, enter mksig
without any arguments.

The super user can generate or update a signature for a user by including a user name
argument.

Other options available to the administrator (as long as there are no more than 1000
accounts):

-a Generates signature files for all users.

-e Updates existing signature files for all users.

The Signature File

Users can have their own signature files created only if the default signature file
exists. When a user sends a message to an offsite address (into the network) a
signature file is appended to the end of the message. This file gives information on
the user’s address and position on the network.

The default signature file can contain any text, including special keywords (below).
When mksig creates the signature file, it copies the default signature exactly,
substituting the user’s information when any keywords are encountered. The keywords
are:

<NAME> Full name (first and last)
<LOGIN> Login name
<HOST> Local host name
<DOMAIN> Domain for the local host

It is important to keep signatures as short and as simple as possible. Long, garish,
space-wasting signatures are indicative of unprofessional, inexperienced network users.

Notes
Mksig runs slower if the signature template contains the <NAME> keyword, causing it
to search $/etc/passwd for the user’s real name.

Mksig refuses to run if the signature template is longer than 10 lines.

Files
$/etc/default/signature - signature template.

1 Printed 22 Feb 03Revised 14 May 1994

ProLine Networking MKSIG(NET)MKSIG(NET)

Author
Dean Fick

2 Printed 22 Feb 03Revised 14 May 1994

ProLine Networking MKSITE(NET)MKSITE(NET)

Name
mksite, rmsite - Make or remove network connections

Syntax
mksite
rmsite [site]

Description
A set of shell scripts, mksite walks you through the process of setting up networking
information for a site while rmsite removes that information when network
connectivity is no longer needed.

Mksite does most of the steps required in getting connectivity set up. It does not
write the L.sys entry, but can bring up the L.sys file in your editor.

Rmsite, likewise, does everything except remove the site’s L.sys entry.

You also need to edit and resubmit your updated site map.

See Also
intro(NET)

Author
Morgan Davis (mdavis@pro-sol.cts.com)

1 Printed 22 Feb 03Revised 10 April 1994

ProLine Networking NED(NET)NED(NET)

Name
ned - Newsys file editor

Syntax
ned

Description
Ned is a convenient editor for managing the system’s master news distribution file,
$/etc/newsys. This program is still under construction. Right now, only the <U>pdate
command is useful.

Files
$/etc/newsys - the newsys file.

See Also
batch(NET), postnews(NET), rnews(NET), unbatch(NET)

Author
Morgan Davis (mdavis@mdg.cts.com)

1 Printed 22 Feb 03Revised 30 March 1994

ProLine Networking NETAUTH(NET)NETAUTH(NET)

Name
netauth - Authorize network mail access

Syntax
netauth [options] [user ...]

Description
Netauth is an administrator’s tool that manages network mail access. Network access
is determined by the existence of a special file in each user’s $/adm directory, called
‘‘mailstop’’. If mailstop exists, the user is denied network mail sending privileges.
This tool simplifies and automates many tasks related to managing network mail access.

The administrator uses netauth to grant or deny network mail access for one or more
local accounts. It can be used to automatically grant network access after a
probationary period. Furthermore, netauth can report network access for any or all
accounts.

Netauth takes the following options:

* Reports net access status for all users.

? All about netauth.

user Reports net access status for the given user.

-a user Allows net access for the given user.

-r user Removes net access for the given user.

-t user Same as -r, except allows auto-aging.

-d [n] Grants network access by deleting all mailstop files older than 30 days
(the default), or older than n days if a numeric argument is given.

Since netauth is most often used from a cron process, it generates and mails a log of
its activity to the root account.

See Also
adduser(ADM), mail(C)

Author
Daniel Davidson (danield@pro-grouch).

1 Printed 22 Feb 03Revised 2 May 1992

ProLine Networking PATH(NET)PATH(NET)

Name
path - Show the mail route to a site

Syntax
path site

Description
Path shows the path through which mail is delivered to a specific site. For
example:

path pro-electric

might produce a display like this:

pro-electric: pro-sol!pro-carolina!pro-electric!*

This means that a letter to a user at pro-electric would first be sent through pro-sol,
through pro-carolina, and finally to the addressee at pro-electric.

Files
$/etc/paths - routing database for this site,
$/etc/rsrc/sendmail.rsrc - path to smart host.

See Also
aliases(NET), sendmail(C)

Author
Dean Fick (dean@pro-electric.cts.com)

1 Printed 22 Feb 03Revised 16 May 1992

ProLine Networking POLL(NET)POLL(NET)

Name
poll - Poll a site

Syntax
poll [-i] [-p progress] site

Description
Poll dials site to exchange mail, news, and files. It uses an extensive set of
macro commands for dialing, connecting, and logging in. Information for connecting to a
site is stored in $/etc/L.sys.

The L.sys File

The L.sys file consists of entries, one or more per site. The first line in an entry
begins in the leftmost column, and starts with the name of a site to poll. Succeeding
lines for the entry begin indented by a tab or spaces.

Entry lines contain space-delimited arguments, so any arguments requiring spaces should
be enclosed by quotation marks (").

A sample entry might look like this:

pro-sample Any 2400 555-1212 local
 \p1
 \[login:] mdss
 \[word:] whatever
 \[id:] pro-test;password
 \!"mdss -x BLX pro-sample"

This entry consists of a main entry line and succeeding lines (indented) which continue
the information for the entry. The first line begins with four fields of information
necessary to begin the poll attempt.

Comments can be included following a pound-sign (#).

L.sys Fields

The first four fields are:

pro-sample The name of the remote site.

Any A valid time specifier. This includes one or more of the following
keywords or time ranges:

Any Site can be polled at any time.

Dead Site is never called unless poll is forced to ignore
time restriction information by including the -i command
line flag.

1 Printed 22 Feb 03Revised 16 May 1992

ProLine Networking POLL(NET)POLL(NET)

Never Site is never called, even if -i is given.

Sun (and Mon, Tue, Wed, Thu, Fri, Sat). The site can be
called only during the days specified.

End Site can be called during the weekend (Sat and Sun).

Day Site can be called during a weekday (Mon through Fri).

xxxx-yyyy Site can be called during the specified time range.
Times are given in 24 hour format and must contain four
digits (no colons). For example, 0000-0630 means the
site can be polled between midnight and 6:30am.

Multiple time qualifiers can be listed, each separated by commas (no
spaces). For example, ‘‘Tue,Fri=1800-2000,End’’ means that a site can
be polled any time during Tuesday, only between 6pm and 8pm on Friday,
and any time during the weekend.

A single time range cannot cross midnight, but a pair of ranges can be
given to do this (e.g. ‘‘2330-2359,0000-0330’’).

2400 The fastest common speed on both systems.

555-1212 The phone number of the remote site. An alternate number can be
specified for multi-port sites with differing phone numbers. This is
done by separating the two numbers with the pipe (|) character (e.g.,
‘‘555-1234|555-5678’’).

A phone number can begin with ‘‘AT’’ to signify a custom dialing
command (e.g., AT&M4DT555-1212). This allows a command to be sent to
the modem before dialing. Note: If you have an MNP-style modem that
uses backslash (\) commands, include two backslashes where normally you
would use only one (e.g., AT\\N0DT555-1212).

If the site does not answer, poll dials a second time, using the
alternate number if given.

local An arbitrary identifier classifying the type of connection. The name
you pick is totally up to you -- it is meaningful to you only. Typical
examples might be ‘‘local’’ (a local call), ‘‘toll’’ (long distance),
etc. The identifier can also be the name of a long distance carrier
server such as ‘‘ATT’’, ‘‘Sprint’’, ‘‘MCI’’, ‘‘PCPursuit’’, etc. The
identifier cannot include spaces or any characters illegal to the
operating system.

Macro Commands

After the fourth field, the macro commands begin. Macro commands start with a
backslash and one character. The macro commands are:

2 Printed 22 Feb 03Revised 16 May 1992

ProLine Networking POLL(NET)POLL(NET)

\[Pattern match. Poll suspends macro execution, watching all the incoming
characters until it matches the pattern given between the left and right
square brackets. Example: \[login:]

By default, \[waits 45 seconds. You can adjust the duration by following
the last bracket with a value in seconds. Example: \[text]90.

The \[command also supports a UUCP-style ‘‘expect-send-expect’’ feature.
This embodies two pattern matches and a sending command in one. For example:

 \[hello]-hi-[hello]

This tells poll to wait for ‘‘hello’’ first. If it receives it within the
duration specified, poll skips the rest of the macro and goes onto the next
one. If ‘‘hello’’ is not found in time, ‘‘hi’’ is sent (with a carriage
return on the end), and poll once again waits for ‘‘hello’’, the second
pattern.

Failure to match a pattern cancels the poll attempt.

\d One-second delay. If an argument is used, such as with \d2 it denotes the
number of seconds to delay (in this case, two seconds).

\b Send a modem break tone.

\c Clear the input buffer. This is used to flush any buffered input from the
host system. It would be useful in a situation where buffered input could
trigger a handshake to occur at the wrong time.

\p Set progress reporting (unless overridden by the -p option on the command
line). By default, poll displays a ‘‘live’’ login session while connecting
with a site. By turning on progress reporting with \p1, characters sent
from the polled site are not displayed. Instead, poll reports progress
messages that can be very useful in debugging a connection attempt. Using
\p or \p0 turns off progress reports.

The -p command line option allows you to override any \p commands. For
example, including ‘‘-p 0’’ or ‘‘-p 1’’ in the command line causes poll to
set the progress mode to on (1) or off (0) and ignore any \p macros.

\! Launch application. This invokes a network protocol to use after all the
handshaking has been done. If the command line requires arguments, the
entire command line must be enclosed between quotation marks, as in the
example given earlier.

Mdss is used for ProLine systems and requires at least one argument: the
name of the site being polled. See mdss for details on the options it
accepts.

3 Printed 22 Feb 03Revised 16 May 1992

ProLine Networking POLL(NET)POLL(NET)

Any argument that does not start with a backslash (\) and a command character is sent
to the remote site. A newline is automatically sent, unless the argument ends with a
semi-colon (;).

Important Notes

All arguments for an L.sys entry are delimited by space characters. Thus, if you need
to match a pattern that contains one or more spaces, enclose the argument in quotation
marks:

\["net login:"]

Any control characters needed in an argument can be represented by using the caret (^),
as in ^C for Control-C. The backslash (\) can be used to escape special characters
like the quote ("), caret (^), and backslash (\).

The L.sys file can contain more than one entry for a single site. This might be
desirable for using a different carrier or long distance service depending on the time
or day of week. Poll scans the entire L.sys file for matching site entries until it
finds one that has a valid poll time and successfully connects.

Files
$spool/logs/mdsslog - a report of network mail activity,
$/etc/L.sys - remote site macro file,
$/mdss/* - directory containing site subdirectories.

See Also
mdss(NET), scan(NET), sendmail(C)

4 Printed 22 Feb 03Revised 16 May 1992

ProLine Networking POSTNEWS(NET)POSTNEWS(NET)

Name
postnews - Post newsgroups to local news areas

Syntax
postnews

Description
Postnews is invoked by rnews when there are newsgroup bundles queued in the
$spool/news area. Bundles are posted into the local news areas (conference system
topics). Since rnews calls postnews when there is work to do, there is no reason to
invoke postnews from the shell or from a crontab entry.

Postnews delivers newsgroup bundles based on information in the $/etc/newsys file.
(See the rnews manual for details on the newsys file format).

Postnews Resource File

The resource file for postnews, $/etc/rsrc/postnews.rsrc, contains a list of
newsgroup field names to be retained in messages posted in the Conference System. A
typical list of fields looks like this:

Newsgroups
Summary
Keywords
Message-ID
Followup-To
References
Sender
Reply-To
Distribution
Organization
Lines

To instruct postnews to leave out certain fields, edit the resource file and place a
pound-sign (#) before each field to be ignored. The Date, From, and Subject fields are
always included in CS messages, and therefore do not need to be in this list.

Files
$/etc/newsys - newsgroup distribution file,
$/etc/rsrc/postnews.rsrc - resource file containing field list,
$spool/news/* - newsgroup bundles.

See Also
cs(C), cs.maint(C), ned(NET), rnews(NET), unbatch(NET)

1 Printed 22 Feb 03Revised 16 May 1992

ProLine Networking RCP(NET)RCP(NET)

Name
rcp - Remote file copy

Syntax
rcp [-abq] [-f from] [-s subject] file user@site...

Description
Use rcp to send text or binary files (of any type and length) to a user on a remote
system. The syntax is similar to the standard cp command which copies a file on the
local system, only you specify a mail address in the user@site format as the target.
Multiple users can be specified, but multiple files cannot.

Options:

-a By including the -a option, rcp sends an ASCII text file as one letter to
the recipient. The text file appears as one message in the user’s mailbox.

-b Binary mode (the default). Binary mode works only between point-to-point
ProLine sites. Intermediate non-ProLine sites will corrupt the file. The
recipient receives an accompanying letter, generated by rcp, in his
mailbox, reporting the status of the remote copy transfer. The binary
portion is saved into his user directory with the same name as the original
file, and all file attributes are preserved.

-f from Allows the super user to specify the original sender.

-q Quiet mode.

-s Rcp uses a the name of the file being sent as the subject. If the -s option
is given, the argument that follows becomes the subject.

Note
The system administrator can deny a user reception of rcp files by
creating a file called ‘‘rcpstop’’ in the user’s $/adm area. This is
desirable with public accounts.

Directory files cannot be sent.

Warning
The user should exercise caution in sending binary files without knowing the
path the file will take through the network. Raw binary (8-bit) files are
supported only by ProLine mail systems. Should such files pass through a
non-ProLine system that strips high bits and control codes, the recipient
will receive a corrupted file. To ensure success in all cases, binary files
should first be archived and then encoded into a text (7-bit) format before
being sent with rcp. The uuencode utility provides such a feature.

See Also
par(C), path(NET), uuencode(C)

1 Printed 22 Feb 03Revised 16 May 1994

ProLine Networking RMNULL(NET)RMNULL(NET)

Name
rmnull - Remove null files

Syntax
rmnull [-a] [site...]

Description
Rmnull provides the system administrator with an efficient way to remove null files
that have been created with mknull. For specific information about null files, see
mknull.

When invoked with the -a argument, rmnull searches through all connecting site
subdirectories in the $/mdss subdirectory, looking for files named ‘‘a0’’. When such a
file is found, it examines the mail header of the file to determine whether or not it
was created by the mknull command. If so, rmnull deletes it. If an actual letter
file was renamed to a0 by mknull, rmnull renames the file to its original name.

rmnull may also be called to work on specific connecting sites, rather than all of
them, by giving one or more site arguments. Example:

rmnull pro-sol pro-carolina

rmnull looks through the $/mdss/pro.sol and $/mdss/pro.carolina subdirectories only,
removing any null files found there.

Files
$/mdss/*/a0 - null files removed or renamed by rmnull.

See Also
mknull(NET), scan(NET)

Author
Dean Fick (dean@pro-electric.cts.com)

1 Printed 22 Feb 03Revised 16 May 1992

ProLine Networking RNEWS(NET)RNEWS(NET)

Name
rnews - Distribute newsgroup bundles

Synopsis
rnews

Description
Rnews distributes newsgroup bundles found in $spool/news as specified by the
$/etc/newsys file. Bundles are sent to offsite addresses as whole batches of articles
in one file, or the bundles may be broken into individual articles for standard mail
distribution, letter by letter (this is not as efficient as forwarding whole batches).

Rnews is invoked by unbatch. It isn’t useful to invoke rnews from the shell or
via a crontab entry.

Sample Newsys File

The news unbatching, distribution, and posting system uses $/etc/newsys to determine
how and where newsgroup bundles are distributed. A typical newsys file looks like
this:

comp.sys.apple2
#D Discussion about Apple II micros
#L apple/net 150
pro-simasd!rnews, ~pro-tcc!apple-local

comp.sys.mac.programmer=c.s.mac.prog
#D Macintosh programmers’ group
#L macintosh/coding 150

comp.dcom.telecom=c.dcom.telecom
#D Telecommunications
#L telecom/general
pro-simasd!rnews

Format of Newsys

The newsys file consists of one more group entries, separated by a blank line. Each
entry includes a number of fields.

The first field in an entry gives the name of a newsgroup. Group names must be legal
file names (15 characters or less and contains no illegal characters). If the group’s
name is not a legal file name, it can be aliased to a legal one with the following
syntax:

real-long-group-name=legal.name

1 Printed 22 Feb 03Revised 16 May 1994

ProLine Networking RNEWS(NET)RNEWS(NET)

For example, comp.sys.mac.programmer could be aliased to c.s.mac.prog,
rec.arts.startrek could be r.a.startrek, and news.announce.newuser could be
n.a.newuser.

It is recommended that after adding or editing groups in the newsys file that ned be
run to update the newsys file. Ned’s update feature makes sure that groups that need
aliases are given legal, descriptive names.

The fields which follow consist of either target addresses or special information for
that entry.

Example Newsys Entry

Study this sample entry:

 comp.sys.apple2
 #D Discussion about Apple II micros
 #R incoming from cts.com
 #L apple/net 150
 pro-simasd!rnews, ~pro-tcc!apple-local
 <pro-frisbee!rnews>, pro-offline!rnews

This entry for comp.sys.apple2 begins with three fields of special information:

#D Description. This is a short description that summarizes the group’s content.

#R Remark. The #R field is a general note to yourself, such as a note indicating
which site feeds you with the newsgroup. Extra #R fields can be included for more
comments.

#L Local Info. The #L field gives local Conference System posting information. It
contains the name of a conference/topic that gets copies of the articles for that
newsgroup. An optional numeric argument can also be included to denote the
maximum number of articles to remain active in that conference. This information
is used by postnews.

The letter following the pound-sign must be CAPITALIZED.

Finally, in the example, the last two lines contain a list of addresses for sites that
subscribe to the newsgroup. More than one address can be included on a line. Each
address must be delimited by a comma, followed by a space. Use as many lines as
necessary, but don’t leave any blank lines between addresses.

A site can be removed from distribution by placing a left-angle bracket (<) in front of
the address -- an enclosing right-angle bracket (>) is optional. This stops rnews
from feeding a site while leaving it in the list.

If an address starts with a tilde (~), the articles are sent one at a time in standard
e-mail letter format. If the address does not begin with a tilde (~), the articles are
sent in batches (multiple articles per file). Batches are always addressed to a site’s

2 Printed 22 Feb 03Revised 16 May 1994

ProLine Networking RNEWS(NET)RNEWS(NET)

‘‘rnews’’ account.

Log File Entries

The three programs, unbatch, rnews, and postnews, put entries into the log file
$spool/logs/newslog. Unbatch reports newsgroups it unbatched and the number of
articles taken from each. Rnews reports which addresses where newsgroup batches were
sent. And, postnews reports how many articles in each newsgroup were posted to a
conference/topic.

If a newsys entry does not send copies of a group to any addresses, and does not
include a #L field (local Conference System posting information), then the newsgroup
bundle will accumulate articles. An appropriate warning message is placed in the
newslog file.

Files
$/etc/newsys - newsgroup distribution file,
$spool/logs/newslog - news processing log file,
$spool/news/* - newsgroup bundles.

See Also
ned(NET), postnews(NET), unbatch(NET)

3 Printed 22 Feb 03Revised 16 May 1994

ProLine Networking SCAN(NET)SCAN(NET)

Name
scan - Scan network mailboxes

Syntax
scan [-ailx] [-f file] [-o flags] [-p app] [site...]

Description
With no arguments given, scan looks in all directories in $/mdss finding any that
contain files. Sites with outbound mail are polled in order to deliver the mail. Each
site with mail is polled in succession until all sites have been processed.

If one or more site names are given, only those sites are scanned.

By using the optional arguments, scan can do more than just invoke poll when files
are found. The options are:

-a Force scan to think that all site directories contain files.

-i Scan invisible directories, too. Normally, only visible directories are
scanned.

-f file Match only the directories that contain the named file.

-l (L) List sites with work pending, including job counts.

-o flags Option flags to pass on to poll (or the application specified by the -p
option). The flags should be enclosed in quotation marks so that scan
won’t attempt to process them.

-p app Sets the application to invoke on sites with work pending. (default is
poll).

-x Scan, but do not invoke poll (or the -p program).

Examples

scan -a -o "-i"

This example calls ‘‘poll -i’’ for all visible site subdirectories in the $/mdss
directory, thus forcing the system to dial all sites regardless of time restrictions.

scan -lx pnet01

Scans $/mdss/pnet01, reporting any jobs pending. It will not execute poll.

scan -il -f a0 -p uustat

Scans all directories (visible or not) for those containing the file ‘‘a0’’. A list of
those found is displayed before the uustat program is called to service them.

1 Printed 22 Feb 03Revised 16 May 1992

ProLine Networking SCAN(NET)SCAN(NET)

Notes

Scan is best used when called from a timed cron process.

Scan builds a list of sites that meet the criteria based on the options provided.
This list is written out to shell script file, e.g.:

poll -i pro-gort
poll -i pro-klatu
poll -i pro-barata
poll -i pro-nikto

After building the script, scan executes the C-Shell to process the script.

Files
$/mdss/* - directories for networked mail sites,
$tmpdir/scan.x - temporary shell script.

See Also
cron(ADM), mknull(NET), poll(NET)

2 Printed 22 Feb 03Revised 16 May 1992

ProLine Networking TUTORIAL(NET)TUTORIAL(NET)

Name
tutorial - Networked e-mail tutorial

Description
This system is one node of the ProLine network. ProLine is the name of the software
that turns an Apple II computer into this BBS. Through the ProLine network, users of
this system can exchange information with worldwide networks, known collectively as the
‘‘Internet’’. ProLine users can also communicate with people on commercial services
such, as America Online, AppleLink, BIX, CompuServe, Delphi, MCI Mail, and The Well
which are also connected to the Internet. As a preface, there are some critical things
that you should know about the ProLine network:

o Every ProLine system is an Apple II-series computer with a single phone line and
usually a single hard drive. By today’s standards, these computers are tiny and
slow, and it is indeed amazing that they can operate a system as sophisticated as
ProLine and be part of a planetary network.

o When you send or receive a network message, you are costing every system along the
way time, resources, and money. When you send or receive network data, you cost
your system administrator money. You also cost the other ProLine sysops money.
Please keep that in mind. This is not to discourage reasonable use of the network,
but remember:

o Any abuse of the network will result in denial of network privileges.

o Finally, be conservative. If you don’t absolutely KNOW an address, don’t send the
letter. Don’t ask for huge files, or send them. Be reasonable. If you’re in
doubt, ask your system administrator.

Networking

Mail networking is simple in concept. You want to send a message to someone who has an
account on a system other than this one. Although the idea is simple, the network’s
operation is quite complex. Fortunately, most of this complexity is handled by the
computers that make up the network. Nevertheless, there are a few things that you
should know about ProLine lest this tutorial confuse you all the more. These include:

o A working knowledge of mail (where you can read or send mail), editors (edit,
vedit, or ed, the ProLine text editors), and cs (Conference System). If you
have already read mail, sent mail to your system administrator or to another user
of this system, and if you have posted and read messages on the Conference System,
then you have such knowledge.

o An understanding that you own a user area on the system’s hard drive for as long
as you have an account on this system. Your user area is a subdirectory (or
folder) inside the system directory called $/usr. It has the same name as your
login name. If your login name were jsbach, for example, your user area would be
$/usr/jsbach. Within your user directory are all your files, including an
important file called signature.

1 Printed 22 Feb 03Revised 29 March 1992

ProLine Networking TUTORIAL(NET)TUTORIAL(NET)

o Optionally, the use of some utilities on this system that aid in mail routing and
file management. These include add, cat, cp, find, grep, rcp, rm, safecom,
setfile, uuencode, uudecode, and a few others. These commands are accessed from
ProLine’s command-line, the C-Shell. This is not to say that you must be totally
conversant in the use of all of these utilities, but they can make things a lot
easier. Review the manuals on these commands to gain a basic understanding of the
functions they perform.

Don’t let this all overwhelm you. You can learn networking bit by bit, and soon you’ll
be a network expert.

Network Addresses

An address in the network is nothing more than a computer network path that you send a
message through to reach a user on a distant computer system. The concept of addresses
is rather straightforward, but the implementation of them can stagger the mind.
ProLine, however, alleviates much of the complexity that would otherwise confound most
users.

Without ProLine’s smart routing features, you would have to know the complete address
path that the message would follow to reach its destination. Consider the postal system
as we know it today. Without relatively short addresses and ZIP codes, we would have
to include complete instructions for letters carriers to deliver a piece of mail.
‘‘Drive from the post office to Elm Street. Take a right. Go up one block. Turn left
at the signal. Fourth house on the right; the one with the pink Ford Escort in the
driveway.’’ Now, consider out of town delivery instructions! What happens when whole
cities (sites) move and change their routing paths (connections)?

To apply this example to electronic mail delivery, you would have to tell each computer
in the network exactly through which systems your message should be relayed. For
example, to send to a user named gbush at pro-applepi, a ProLine site in Washington,
DC, from pro-sol, a site in San Diego, CA, you would have to know this address:

pro-pac!pro-freedom!pro-novapple!pro-applepi!gbush

As you can see, an exclamation point (!) separates each system in the path, just as a
certain character separates directory names in pathnames under your computer’s
operating system. Needless to say, this isn’t very convenient, and that lengthy address
was needed to send a letter to a fellow ProLine site! Why can’t the computers keep
track of how to send the mail? The answer is, they can.

Domain (or Internet) Addresses

Fortunately, sites that make up the world computer network have devised simpler forms
of addressing. These abbreviated addresses are known as ‘‘domain’’ or Internet
addresses. A domain is simply a large computer that knows the explicit paths for a
group (domain) of addresses. If you wanted to send mail to someone on BITNET, the
academic network, you would simply send it to UserName@SiteName.BITNET.

2 Printed 22 Feb 03Revised 29 March 1992

ProLine Networking TUTORIAL(NET)TUTORIAL(NET)

To send to a user named JSMITH who has an account on the system CLARGRAD, for example,
you would send to JSMITH@CLARGRAD.BITNET.

To send to jscully who has an account on a system at Apple Computer, you would just
send to jscully@apple.com.

In addition, this system knows the path to every other ProLine system. You don’t even
need the domain identifier (the part of the address following the ‘‘.’’). To send mail
to jbush at pro-applepi, you would address your message to:

gbush@pro-applepi

It’s just that simple.

You will most likely learn someone’s address by their telling you in person, or by
reading it in their signature on a network message.

Signatures

Signatures are succinct addenda to messages you send to people on the network. They
contain your address information, allowing persons wishing to respond or correspond
with you to find the easiest mail path to you. The signature file is kept in your user
area with the filename of signature. When you signed on to ProLine to create your
account, a signature file was prepared for you.

Your signature automatically attaches itself to all correspondence that you send to the
net or to any person on the net. So, the utmost consideration must go into choosing
what you want to have as a signature if you desire to customize it. It should:

1. Provide a reasonable return address/path to you so that all persons reading your
message will be able to send you mail.

2. Not contain any offensive text or diagrams in it that would detract from normal
standards of conversation. This includes any vulgarity, and any vulgar text art.

3. Not be large. Four lines should be the most that you need for any signature
file.

4. Not take up bandwidth. What this means is that if you add to your signature, the
additional information should be worth the increased cost to distribute it through
the network.

Summary

As you can see the interaction available in a network of this sort can be quite
amazing! You can have correspondence going with a number of people around the world.
But please do not abuse the system. The limitations of a small computer such as this
one precludes us from having a really large system, and therefore the only way that you
can cut the drive use down is to use it effectively. Please do not subscribe to any

3 Printed 22 Feb 03Revised 29 March 1992

ProLine Networking TUTORIAL(NET)TUTORIAL(NET)

mail-feeds without prior approval from the system administrator. Anyone abusing the
network privilege is likely to lose network access.

Files
$home/signature - contains your net address info

See Also
domains(NET), mail(C), rcp(NET)

4 Printed 22 Feb 03Revised 29 March 1992

ProLine Networking UMDSS(NET)UMDSS(NET)

Name
umdss - Unix Mail Delivery SubSystem

Syntax
umdss [site]
umdss -q
umdss -v

Description
Command line option -q queries umdss to report information on traffic pending for each
site, including live connections. The -v option displays the umdss version and
copyright information. With no arguments, umdss prepares for a remote site to log in
and begin a session. With a site argument, umdss begins a session for a site that has
just been polled (originate mode) and is connected. (Polling is not part of the umdss
software).

Introduction

This document describes the umdss program that runs on UNIX computers, providing a
compatible mail exchange interface with ProLine systems. It is organized into the
following sections:

o About UMDSS
o How it Works
o Account Installation
o Installing UMDSS
o File Permissions and Directories
o ProLine Site Installation
o Transporting Mail
o Transporting Mail with Shell Scripts
o Transporting News
o For the ProLine Administrator
o Logfile
o Job and Session Reports

About UMDSS

Umdss is a simple mail exchange program. It implements the Mail Delivery Subsystem
(MDSS) protocol designed in 1985 by Morgan Davis and Bill Blue for the purpose of
simplifying the exchange of mail and news with microcomputers, like the Apple II.

Here are some of umdss’s features:

o Mimics UUCP in many ways.
o Maintains site lock (LCK) files.
o Updates session ‘‘.Status’’ files.
o Includes a uustat-like function (the -q option).
o Integrates with the local mail system (works best with smail 3.x).
o Maintains a detailed log file.

1 Printed 22 Feb 03Revised 16 May 1994

ProLine Networking UMDSS(NET)UMDSS(NET)

o Includes a large packet protocol (mdx) for 90-95% transfer efficiency.
o Supports non-batched external protocols as well (e.g. sx/rx).
o Compatible with high-speed modems and ports.

Note that umdss is simply a mail tranportation utility. It does not possess the
ability to dial a remote host, connect, and login. A separate utility could accomplish
this, then invoke umdss (with the name of the site being called as an argument).

How It Works

A ProLine system dials into the UNIX machine to login as ‘‘umdss’’. This runs the umdss
program (with no arguments). The ProLine system is initially the master, commanding the
UNIX machine (the slave) to receive mail (if there is any). When all mail is sent, the
two machines reverse roles; the UNIX side becomes master, and ProLine, the slave.
Again, the master commands the slave to receive mail (if there is any).

When a letter is sent, umdss calls upon an external file transfer program to transmit
the file. Umdss deletes each file successfully sent, and places an entry in the
umdsslog file.

Likewise, when a letter is received, umdss runs a transfer utility to receive the file,
then mails it through rmail. When rmail is done, umdss logs the reception of the
letter.

Among other things, log entries show the site, date, time, size and recipient of each
letter. (See the ‘‘Logfile’’ section for more details).

Finally, when all mail is exchanged, both machines disconnect.

Account Installation

The first step is to create an account with the following attributes:

Login: umdss
Password: whatever
Home: /usr/local/lib/umdss
Shell: /usr/local/lib/umdss/umdss
Aging: Disabled -- the account should never expire.

While you’re at it, set up a mail alias so that any incoming messages addressed to
‘‘umdss’’ (i.e. bounces from the net) are sent to a legitimate administrative account.

You should include umdss in the same group as ‘‘uucp’’.

Installing UMDSS

The umdss package, normally distrbuted as a compressed tar file, includes C source
code, utilities, and support files for running umdss on a UNIX computer.

2 Printed 22 Feb 03Revised 16 May 1994

ProLine Networking UMDSS(NET)UMDSS(NET)

Follow these steps to install the UMDSS package (it is assumed that you have sufficient
access to create directories and accounts on the system):

1. Uncompress umdss.tar.Z (e.g. uncompress umdss.tar.Z)

2. Change directories to /usr/local/lib (e.g. cd /usr/local/lib). (The recommended
location is in the /usr/local/lib hierarchy. This location is used throughout this
document).

3. Unarchive the tar file (e.g. tar xvf umdss.tar). Older versions of tar may
require the ‘‘o’’ option to create the extracted files using your group ID
information.

The /usr/local/lib directory now includes the umdss directory which contains the
following files:

README This document in plain text format
README.mdx Plain text MDX documentation
README.ps This document in PostScript format
idfile.sample Sample ID file
promail* Mail grabbing script
promail.bsd* Mail grabbing script for BSD
query.proline* Sample smail query script
smroute Sample smail routers entry
smtrans Sample smail transports entry
src/ Source code directory with Makefile

To build the umdss utility programs, change directories to ‘‘src’’. The source code
has been written to be compatible with most popular systems (XENIX, SCO UNIX,
Interactive UNIX, and BSD systems). However, some tweaks may be necessary to accomodate
your system.

Before building the executables, take a look at the ‘‘config.h’’ file. You will want to
read the introductory comments and make changes to it as required by your system.

When ready, issue the ‘‘make’’ command. This begins the compilation process on the
source files, and if all goes well, three programs are created: umdss, mdx, and upmail.
If any errors are reported, you will have to do some debugging, or enlist a guru to
get it to build for your system.

To place the executables in the right spot (the parent directory), use ‘‘make
install’’. To quickly remove the ‘‘.o’’ files, use ‘‘make clean’’ (or ‘‘make Clean’’
with a capital C to remove the redundant executables and object files). Then change
directories to ‘‘..’’ to put you back in /usr/local/lib/umdss.

File Permissions and Directories

Make sure that /usr/local/lib/umdss and its files are owned by umdss and are in the
right group with appropriate permission modes.

3 Printed 22 Feb 03Revised 16 May 1994

ProLine Networking UMDSS(NET)UMDSS(NET)

Now you must make the umdss spool directory. This is the directory into which outgoing
mail is stored for each ProLine system (each site gets its own directory). The
recommended directory is /usr/spool/umdss, should be owned by umdss and be in the uucp
group. Individual site directories will be created automatically by umdss, or by the
local mail system, so the directory should allow for creation of additional directories
by umdss.

Verify that ‘‘idfile’’ has appropriate permissions set so that it can be read only by
umdss.

Umdss creates lock files (e.g. LCK..pro-site) in the appropriate directory where UUCP
stores its lock files. Make sure umdss has the ability to write to this directory.

Before you can send mail to a ProLine site, inform the UNIX mail system of the site’s
existence, ensuring that the system never dials the ProLine site. This involves editing
the Systems (or L.sys) file and paths database. The procedure may differ among brands
of UNIX.

ProLine Site Installaton

Perform the following steps for each ProLine site that will have access to the umdss
account:

Add an entry into the ‘‘idfile’’ (or edit the sample entry provided if this is your
first time). The format of the idfile is as follows:

 pro-site;password;send-command;receive-command

Pro-site is the name of the ProLine site (e.g. pro-apple2). Password is a security code
that the ProLine site sends to verify its identity. The send-command and
receive-command items are command lines that invoke the external protocol programs to
exchange mail. Example:

 pro-sol;morgan;mdx -L -s %s;mdx -L -r %s

This example shows that the mdx program is used for both sending and receiving. The %s
characters indicate where the protocol program expects a filename. (See the
‘‘README.mdx’’ file for details on using mdx’s options).

Note: The mdx program is invoked via the C function system(). Some UNIX
implementations do not include the current directory in the executable search path.
You may have to add ‘‘./’’ (e.g. ‘‘./mdx’’) for mdx to be found and executed by
system().

The ‘‘idfile’’ may include comments where desired. Comments follow the pound-sign (#)
character.

4 Printed 22 Feb 03Revised 16 May 1994

ProLine Networking UMDSS(NET)UMDSS(NET)

Transporting Mail

If the UNIX host is running a smart mailer, like smail version 3.x or newer, it can be
told to deposit messages directly into ProLine site directories. This is done by
integrating the upmail transport program with smail. It takes a little work to get it
set up, but it is far more efficient to use than any other scheme.

You should be familiar with smail’s transport and routing feature. The ‘‘transports’’
file is used to tell smail how to call a transport program like upmail. (Umdss comes
with a sample entry for the transports file in ‘‘smtrans’’.)

The ‘‘routers’’ file tells smail how to recognize which sites use a particular
transport. Two entries are needed so that smail can locate directly connected ProLine
sites as well as any ProLine sites found in a ‘‘paths.pro’’ database containing the
paths to known ProLine systems. (A sample routers entry can be found in ‘‘smroute’’.)

Smail uses a query script to find out which router to use when delivering mail. (Umdss
comes with a sample shell script named ‘‘query.proline’’.) By default, this script
reads the umdss idfile to match directly connected ProLine systems (this means the
idfile must be able to be read by smail). A more secure and more efficient scheme is to
create a list of directly connected sites in the script’s ‘‘for’’ loop. The drawback to
this approach is that you need to remember to edit the script each time you add or
remove a directly connected site.

A working example is described as follows: two routers are designated to any sites that
begin with ‘‘pro-’’. They test the addresses before local and paths matching for
regular traffic. The first one looks for exact matches (first hop) using the
query.proline script. This script scans umdss’s idfile for names that are directly
connected to the host. If that fails, the next test uses a sorted paths-formatted
database and lookup to resolve any path that involves a ProLine site.

(That database is made by using grep, searching for ‘‘<tab>pro-’’ in the master paths
database and saving the results to paths.pro. The reason for this is so that any
target ProLine site can be recognized and use the upmail transport, rather than the uux
transport that would be used if there was a match in paths, which is the next test if
this one fails.)

Obviously, the logic utilized to make this all work (with gateway resolution) would
vary dramatically according to the mail transport. You may also need to make
adjustments to the sample files if your directories differ.

Transporting Mail with Shell Scripts

If the UNIX host doesn’t have a flexible mailer, like the kind described above, the
umdss package includes a shell script called ‘‘promail’’ (and ‘‘promail.bsd’’ for use
on BSD systems). Promail is run by either ‘‘root’’ or ‘‘uucp’’ to move mail in a
ProLine site’s UUCP directory (e.g., /usr/spool/uucp/pro-site) into the spool directory
where umdss expects it (/usr/spool/umdss/pro-site). Control and execution files are
deleted, and only the actual data files (those containing mail) are moved out of the
UUCP area, into the umdss spool area for the corresponding site.

5 Printed 22 Feb 03Revised 16 May 1994

ProLine Networking UMDSS(NET)UMDSS(NET)

If you have to use the shell scripts, add an entry in a crontab file to execute
‘‘promail’’ (or ‘‘promail.bsd’’) as often as traffic demands. The script should be run
via root or uucp, and requires at least one argument: the name of the ProLine site.
Example:

20 * * * * /bin/su -c "/usr/umdss/promail pro-site" >/dev/null 2>&1

Older UNIX systems may impose a length restriction on site names. If this is the case
with your system, and the site you’re adding has a name that exceeds the limit, add a
second name argument: the truncated version of the ProLine site’s name. For example, if
the site is called pro-apple2, and your machine imposes an eight character restriction,
give ‘‘pro-appl’’ as the second argument.

Modern UNIX systems can accomodate all ProLine site names which are usually less than
12 characters, but never exceed 15.

Transporting News

The cnews program makes it easy to send uncompressed news batches through the mail
system to a ProLine site. Be sure that the batches are NOT compressed and that they
are sent via mail (not deposited directly into the ProLine site directories). The
batches should be addressed to the ProLine site’s rnews account (e.g., pro-site!rnews).

For the ProLine Administrator

UNIX administrators will want to pass this information onto sites that will poll it:

The ProLine administrator should take appropriate steps to connect with the UNIX
machine by invoking its mdss program with options that agree with the protocol being
used on the UNIX system. If mdx is used with the -L (4K XMODEM) option, the ProLine
site will invoke mdss with ‘‘-x TLX’’ after connecting. This tells it to enable text
(newline) conversion, large 4K packets, and standard XMODEM.

A typical L.sys entry for ProLine systems might look like this:

unix-host Any 9600 593-7305|593-6481 local
 \[in:]2-^M;-[in:]5 umdss \[rd:] whatever
 \[id:] pro-site;password
 \!"mdss -x TLX unix-host"

If the ProLine system is running CS 2.7a or newer, news articles to be posted to the
net should be addressed to rnews (e.g. rnews@host). Otherwise, the UNIX administrator
may want to set up some aliases that redirect e-mail letters into specific newsgroups.
Again, this is very easy to do with cnews.

Logfile

Umdss maintains a log file of all messages received and sent, including connect and

6 Printed 22 Feb 03Revised 16 May 1994

ProLine Networking UMDSS(NET)UMDSS(NET)

disconnect information. (NOTE: Umdss can only create the log file if the umdss home
directory is owned by umdss, or if a mdsslog file is manually created with proper
permissions set).

Here is a sample section from the umdsslog file:

pro-sol 8/30-10:28 C i1F 38400
pro-sol 8/30-10:28 R 1636 pro-palmtree.socal.com!mporter
pro-sol 8/30-10:28 R 734 miavx1.acs.muohio.edu!tfschmidt
pro-sol 8/30-10:29 R 2041 pnet01!crash!excalibur.cb.att.com!mlg
pro-sol 8/30-10:29 S 4656 rnews
pro-sol 8/30-10:29 S 1914 mdavis
pro-sol 8/30-10:29 S 1563 rnews
pro-sol 8/30-10:29 S 3407 mdavis
pro-sol 8/30-10:29 H S#4,11540 R#3,4411 i1F 38400

Each entry begins with the site’s name and the current date and time. Entry codes are:

C Connection (showing the port and speed)

R Receive (with byte count and target address)

S Send (with byte count and target address)

H Hangup (showing transfer summaries, port, and speed)

* ALERT or ERROR message

? Debugging message

The H entry shows the number of files (and total bytes) sent after the S#, and the
number of files received (and total bytes) after the R#.

The umdsslog file can grow quickly, depending on traffic, and requires occassional
attention. Using grep to find lines containing ‘‘*’’ is useful for quickly spotting
errors.

Jobs and Session Reports

The -q option reports current information about all ProLine sites serviced by umdss:

Site Jobs Kilobytes Last Access TTY Session
=============== ==== ========= =========== === =======
pro-acsd 7 12.30 09/17-06:50 i1A success
pro-amber 4 165.12 09/19-15:55 i1D success
pro-angmar 4 7.29 09/19-00:24 i1G success
pro-beagle 0 0.00 09/19-16:14 i1D success
pro-calgary 5 8.23 09/19-02:43 i1D success
pro-carolina 6 35.99 09/19-17:25 i1D TALKING Received 5 (250K)
pro-nbs 3 7.56 09/19-14:36 i1F success

7 Printed 22 Feb 03Revised 16 May 1994

ProLine Networking UMDSS(NET)UMDSS(NET)

pro-nsdapple 3 21.18 09/19-14:55 i1E success
pro-party 1 25.15 09/19-16:00 i1E success
pro-sat 10 142.68 09/19-04:04 i1D success
pro-sol 34 149.33 09/19-17:19 i1M TALKING
=============== ==== ========= =========== === =======
 77 574.81

The -q option will report FAILED sessions as well as bogus lock (LCK) files that would
otherwise indicate active sessions. Bogus locks can occur if umdss terminates
abnormally, but they won’t prevent subsequent sessions from starting up.

Notes
The umdss project is continually evolving as new UNIX systems implement it. Comments
are appreciated on the software (and documentation) and any suggestions for making it
work better.

If you make changes to the source code, be sure to enclose them within conditional
directives. Do not change any of the existing code. Send your changes to
mdavis@crash.cts.com so they can be included in the next official distribution.

Files
/usr/local/lib/umdss/ - umdss’s home,
/usr/local/lib/umdss/idfile - site id file,
/usr/local/lib/umdss/umdsslog - logfile,
/usr/local/lib/umdss/src/ - source code directory,
/usr/spool/umdss/ - site spool directories,
/usr/spool/umdss/.Status/ - contains site’s status files

See Also (ProLine)
intro(NET), poll(NET), scan(NET), sendmail(C)

See Also (Unix)
cnews(C), smail(C)

Authors
Morgan Davis (mdavis@cts.com) and Bill Blue (bblue@cts.com)

8 Printed 22 Feb 03Revised 16 May 1994

ProLine Networking UNBATCH(NET)UNBATCH(NET)

Name
unbatch - Convert rnews batches into newsgroup bundles

Syntax
unbatch

Description
Unbatch sorts the $/sys/mail/rnews mailbox into files based on newsgroup names. For
example, unbatch might search through the rnews mailbox for all comp.sys.mac.misc
articles, and writes them into a designated bundle for that newsgroup. The newsgroup
bundles are stored in the $spool/news directory for later processing by rnews.

Unbatch should be called regularly via a crontab entry in order to process any news
that came in. After the rnews mailbox is split into bundles, unbatch invokes rnews
to distribute the bundles locally and/or to offsite addresses.

See rnews for a description of the $/etc/newsys file and its format.

Files
$/etc/newsys - newsgroup distribution file,
$spool/news - spool area for newsgroup bundles,
$/sys/mail/rnews - rnews mailbox.

See Also
ned(NET), rnews(NET), postnews(NET)

1 Printed 22 Feb 03Revised 16 May 1992

ProLine Networking UUTRAF(NET)UUTRAF(NET)

Name
uutraf - Network traffic report

Syntax
uutraf [options] [logfile]

Description
Uutraf analyzes mdss log files and provides a report on transfer statistics using a
default sorting format or an optional user-specified sorting format.

By default, uutraf processes the current mdsslog file in the $spool/logs directory,
unless an optional log file pathname is provided.

Traffic reports may be redirected into a file by adding, as the last argument on the
command line, a ’>’ followed by the report file name.

Tracking Options

-p Track only poll entries.

This is useful to determine connection costs that you have initiated. Report
entries are generated for each ‘‘carrier stamp’’ as given in the L.sys file.

-s Track only by speed (baud rates).

Sorting Options

Reports can be sorted in various ways expressed below (the tag options, r, x, and
t, correspond to received, transmitted, and total respectively):

-b[r|x|t] Sort by number of bytes.

-c[r|x|t] Sort by characters per second (CPS) rate.

-h[r|x|t] Sort by hours

-n[r|x|t] Sort by number of files

-a Sort in ascending order, rather than descending.

Examples

uutraf -bt Displays the total bytes transferred, in descending order for all active
sites. This is the default reporting method.

uutraf -cx Displays the connections with the highest characters transmitted per
second rates, in descending order.

1 Printed 22 Feb 03Revised 16 May 1992

ProLine Networking UUTRAF(NET)UUTRAF(NET)

uutraf -hxa Displays the connections by total hours of modem transmission time, in
ascending order.

Note
Uutraf works on mdss log files only. Other types of log files give it indigestion.

Files
$spool/logs/mdsslog - current mdss log file.

See Also
arbitron(NET), intro(NET), mdss(NET)

2 Printed 22 Feb 03Revised 16 May 1992

ProLine

Software Development

Copyright 1994 Morgan Davis Group

ProLine Software Development PLAPP(S)PLAPP(S)

Name
plapp - How to create ProLine applications

Description
This document describes the procedures recommended for creating applications for use in
the ProLine environment.

One of the best things about ProLine is its ‘‘extendibility’’ in the form of
user-written programs, and the ease with which they can be created. Not only does this
provide custom functions for individual sites, but such extensions can be distributed
to others, and everyone benefits. This has already been done, and the Morgan Davis
Group (MDG) would like to encourage additional development along with some reasonable
guidelines.

Before starting on any new or converted program for ProLine, you should have the
ModemWorks Programmer’s Manual, available from MDG. This manual describes all the
commands and techniques for managing the communications interface between BASIC
programs and the system. MD-BASIC is also highly recommended for doing your ProLine
development.

The Hard Way

Creating a ProLine program using Applesoft’s immediate input mode is possible. In
fact, until 1990, ProLine was created and maintained for six years in this way.
Everyone has immediate mode Applesoft, so anyone can easily create ProLine applications
without any special tools -- it’s just painfully inconvenient compared to using
MD-BASIC.

It also becomes difficult to maintain and support when core functionality in ProLine
changes to accommodate new features. ProLine programs written in MD-BASIC using the
core set of ProLine library functions need only be recompiled with little or no changes
to the program source code. Programs written in Applesoft require extensive changing
after analyzing the raw output from newer MD-BASIC-generated programs.

Thus, this method of development is highly discouraged since compatibility with updated
versions of ProLine cannot be guaranteed nor easily maintained.

The Easy Way

MD-BASIC comes with a complete subroutine library and interfaces for creating ProLine
applications in a very neat and powerful C-like environment for BASIC.

Here is a sample program for ProLine written in MD-BASIC:

#define IDENT_PROG "args"
#define IDENT_VERS "1.0"
#define IDENT_DATE "30mar94"
#define IDENT_NAME "Morgan_Davis"

1 Printed 22 Feb 03Revised 30 March 1994

ProLine Software Development PLAPP(S)PLAPP(S)

#include <proline/proline.h> ’ Include ProLine interface

 gosub AppInit ’ Initialize environment
 for arg = 0 to argc - 1 ’ Loop through arguments
 print argv$[arg] " "; ’ Display them
 next
 print ’ Finish up with a newline
 goto Exit ’ And then exit

#include <proline/proline.lib> ’ Include subroutine library

See the proline.h and proline.lib, files for important instructions and handy
constant definitions. ProLine developers can also take advantage of additional
libraries, such as launch.lib (a simple command line processor that can be used to
launch external programs and return back to yours), getopt.lib (a command line option
processor making it easy to parse mixed arguments and flags), and more.

Resource Files

If your program includes various settings and adjustments that the user may want to
configure, keep them in an external data file. Do not hard-code settings into your
program. That’s ugly and gross, and not very friendly. Let the administrator change
the operation of your program by editing settings with an editor.

Your external data files, called ‘‘resource files’’, are stored in the $/etc/rsrc
directory, and end with the .rsrc extension. The first part of the resource file
name should match the name of your application (e.g. the ‘‘sendmail’’ application has a
‘‘sendmail.rsrc’’ file).

Do not deviate from this naming convention, as a future resource editing utility might
expect to find matching ‘‘.rsrc’’ files. The format of your resource file should be
fairly simple -- one data item per line if possible. Lists of items should include a
count line preceding the lines of items.

If your program must store a data file for each user who uses it (e.g. user preference
settings), determine if your program should allow the user to edit the file (and
possibly mess up its format) if saved in the user’s home directory. Preference files
that are changed by your program only should be stored in the user’s $/adm directory
($/adm/username) which is inaccessible to the user.

Input and Output

Using HOME in your program does not clear a caller’s screen. Nor will commands like
HTAB and VTAB -- they work only on the ProLine host’s display. Refer to the &IOCTL
command in the ModemWorks manual for details on local and remote screen manipulation.

Avoid Applesoft’s INPUT statement for getting input, especially for numeric input.
This is because Applesoft has some gross error messages that will be displayed if the
user enters something it doesn’t like (e.g. ?REENTER or ?EXTRA IGNORED). Plus, INPUT

2 Printed 22 Feb 03Revised 30 March 1994

ProLine Software Development PLAPP(S)PLAPP(S)

won’t allow the user to enter certain characters. Instead, use AmperWorks’ more
powerful &READ statement.

When reading data from a file, use AmperWorks’ &GET statement. &GET is clean.
Applesoft’s INPUT does stupid things like clearing the screen from the cursor to the
end of the line, and then moving the cursor down one line.

Don’t assume anything about the configuration of other sites. The only
directories/volumes that you can reasonably assume to exist are those that are
distributed with ProLine. For example, if you provide a program (or script) that makes
use of ‘‘/ram’’, it will fail on any site that doesn’t have a volume named ‘‘/ram’’
online!

Good Programming Tips

Here are some tips for creating good, high-performance code:

1) Use multiple statements per line. Your program executes faster and occupies less
memory. For each line conserved, you save at least six bytes. (MD-BASIC
automatically does this.)

2) Renumber by ones. Line numbers take up one byte per digit. The shorter your line
numbers, the more you save. A good renumbering utility is recommended. (MD-BASIC
automatically does this.)

3) Modularize large programs. If your application is larger than 20K in size, you
should break it down into modules to leave enough RAM left for variable storage.
Smaller programs run faster.

4) Eliminate unneeded processing in loops. If a statement in a loop is not
necessary, move it outside of the loop. For each iteration of the loop, the
statement will be executed, slowing things down.

Bad:

for i = 1 to 100
 j = q * 34 / c
 r = i + j
 gosub process_r
next

Good:

j = q * 34 / c
for i = 1 to 100
 r = i + j
 gosub process_r
next

3 Printed 22 Feb 03Revised 30 March 1994

ProLine Software Development PLAPP(S)PLAPP(S)

5) Place frequently accessed routines at the top. Applesoft searches for program
lines starting at the beginning of your program on down to the last line. The
closer a referenced line is to the top, the sooner Applesoft finds it. It goes
without saying: put the least commonly used routines at the bottom of your
program.

6) Declare commonly used variables and constants at the start of the program. Give
them short variable names (unless you’re using MD-BASIC which optimizes long
variable names to short ones). Applesoft can evaluate a constant value faster if
it is contained within a variable.

7) Use special (sneaky) effects to hide processing delays. If the program is about
to begin some lengthy number crunching, the user perceives the passage of time is
faster if there is a diversion (e.g. something to read). What might pass for a
friendly delay loop for reading, might actually have been the initialization of a
large matrix, or maybe some disk access.

Distribution

ProLine boasts a powerful and convenient online help system that displays help
documents in a programmable format for the best viewing on any screen, dot-matrix
printer, or PostScript-compatible laser printer. Always include documentation in
‘‘man’’ formatted text files with your applications. See the man(CT) and manuals(M)
entries for more details.

If you are distributing more than one file (e.g. the program file and its ‘‘man’’
file), place them into a ProLine archive (par) file. Be sure the archive retains the
standard ProLine directory structure so that it can be easily unpacked on the target
systems. To do this, always create ProLine archives from the perspective of the
top-level ProLine System Directory ($/). Introduce new subdirectories before any files
within it are referenced.

When you distribute your archive, include installation instructions (e.g. in the e-mail
letter accompanying transmission of your archive, or secondary text file). This
describes how to unpack your archive, be it encoded (uuencode or BinSCII) or compressed
(ShrinkIt). If you can’t (or won’t) include installation notes, make sure the file’s
suffix is descriptive of what’s inside:

ProLine Archive (par)
ShrinkIt Archive (shk)
Uuencoded (uu)
Uuencoded, compressed archive (shk.uu)

Steps for assembling a typical distribution:

1) Put all the files into a ProLine archive.

2) If larger than 10K, put the resulting .par file into a ShrinkIt archive (to take
advantage of the compression).

4 Printed 22 Feb 03Revised 30 March 1994

ProLine Software Development PLAPP(S)PLAPP(S)

3) Uuencode the resulting file for transmission via e-mail.

Files
$/pub/proline/plapp.exe - ProLine Application subroutines.

See Also
man(CT), manps(CT), manuals(M), par(C), updates(ADM), uuencode(C)

5 Printed 22 Feb 03Revised 30 March 1994

